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Part I

Lecture 1 — Statistical physics 101

1 Introduction and historical context

Slides.

2 The Curie-Weiss model

In the introduction to these lectures we have discussed the core ideas of statistical physics, and
motivated why it provides a natural framework to think about high-dimensional problems arising in
different fields, and in particular in computer science. Before moving to the core of these lectures,
which will be the application of these ideas to machine learning questions, we would like to illustrate
some of these concepts in perhaps the simplest statistical physics problem, the Curie-Weiss model,
defined by the following Hamiltonian:

H(s) = − 1

2d

d∑
i,j=1

sisj − h
d∑
i=1

si, s ∈ {−1,+1}d (2.1)

where h ∈ R is a constant known as the external field.1 Note that despite being quadratic in s, the
energy function eq. (2.1) is not convex due to the binary constraint in s ∈ {−1,+1}d.

Every binary variable si ∈ {−1,+1}, known as a “spin” in the physics jargon, interacts with every
other spin. This means the model lacks of geometry, as there is no notion of distance between spin si
and sj .

2 We say the model is fully-connected, mean-field or defined in a complete graph.
The probability of finding the spins at a given configuration is given by the Gibbs-Boltzmann

distribution:

P(S = s) =
e−βH(s)

Zd(β, h)
(2.2)

where β ≥ 0 is a constant known as the inverse temperature and the normalisation constant Zd is
known as the partition function:

Zd(β, h) =
∑

s∈{−1,+1}d
e−βH(s) (2.3)

The measure in eq. (2.2) weights each configuration s ∈ {−1,+1}d according to their energy H(s).
When β = 0, eq. (2.2) reduces to the uniform measure over the hypercube (Si = ±1 with equal
probability 1/2), while in the limit β →∞ the measure peaks in the configurations that minimise the
energy function eq. (2.1), also known as the ground state. Therefore, the interaction term in eq. (2.1)
favours the alignment between spins, while the external field term favours configurations which are
alined with sign(h). This suggests also an interpretation as a model for conformist behaviour, where
every citizen i ∈ [d] pick their choice si ∈ {−1,+1} according to the majority.

2.1 High-dimensional asymptotics

The central idea in the statistical physics approach to distributions such as eq. (2.2) is to find low-
dimensional functions of the configurations which summarise the behaviour of the measure in the limit

1Note it is sometimes common to introduce a second constant J for the quadratic term. Without loss of generality,
we work in units of J = 1.

2In contrast to the Ising model, where the interaction is nearest-neighbours.
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Figure 1: Binary entropy H(m) defined in eq. (2.11) as a function of the magnetisation m.

of large d. In statistical physics, these are known as macroscopic variables or order parameters, and
in high-dimensional statistics are known as summary statistics.

Often, it might not be obvious what are good order parameters for a given Hamiltonian, and
solving the model might require some intuition on the system. However, for the Curie-Weiss model
eq. (2.1) it is clear that the Hamiltonian is only a function of the average magnetisation:

s̄ =
1

d

d∑
i=1

si ∈ [−1, 1] (2.4)

Indeed, we can re-write:

H(s) = −1

2

(
1

d

d∑
i=1

si

)2

− dh

(
1

d

d∑
i=1

si

)
= −d

(
s̄2 + hs̄

)
(2.5)

Therefore, the probability that the system has an averaged magnetisation S̄ = m is given be:

P(S̄ = m) =
Ω(m, d)

Zd(β, h)
edβ( 1

2
m2+hm) (2.6)

where Ω(m, d) is the number of different configurations s ∈ {−1,+1}d that correspond to an average
magnetisation s̄ = m:

Ω(m, d) =

(
d

d+dm
2

)
=

d!

(d−dm2 )!(d+dm
2 )!

(2.7)

Recall that d! ∼ (d/e)d, which means that for large d there are exponentially many configurations with
a given averaged magnetisation. We can also write eq. (2.6) as:

P(S̄ = m) =
1

Zd(β, h)
edβ( 1

2
m2+hm)+log Ω(m,d) (2.8)

This allow us to show the following result:

Theorem 1 (Large deviation principle). In the high-dimensional limit d→∞ (a.k.a. thermodynamic
limit in physics), the distribution eq. (2.6) satisfies a large-deviation principle:

P(S̄ = m) ∼
d→∞

ed(φ(m;β,h)−φ(m?;β,h)) (2.9)
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with m? = maxm∈[−1,1] φ(m;β, h) and:

φ(m;β, h) =
β

2
m2 + βhm+H(m), (2.10)

H(m) = −1 +m

2
log

(
1 +m

2

)
− 1−m

2
log

(
1−m

2

)
(2.11)

The function H(m) is also known as the binary entropy.

Exercise 1. Prove Theorem 1 by:

1. Showing that eq. (2.7) can be bounded by:

edH(m)

d+ 1
≤ Ω(m, d) ≤ edH(m) (2.12)

using Stirling’s approximation.

2. Then showing that eq. (2.6) can be bounded by:

1

d+ 1

1

Zd(β, h)
edφ(m;β,h) ≤ P(S̄ = m) ≤ 1

Zd(β, h)
edφ(m;β,h) (2.13)

3. Then, by bounding the free entropy density Φd(β, h) = 1/d logZd(β, h):

φ(m?)−
log(d(d+ 1))

d
≤ Φd(β, h) ≤ φ(m?) +

log(d+ 1)

d
(2.14)

4. Finally, conclude Theorem 1 by passing to the limit.

Large deviation principles such that eq. (2.9) are at the core of statistical physics, and essentially
states that the probability that a configuration s ∈ {−1,+1}d has takes an averaged magnetisation s̄
different from m? is exponentially small in d.

Note that the key object in this discussion, the potential function φ(m;β, h), is directly related
to the asymptotic value of the free entropy density Φd(β, h) = 1/d logZd(β, h). In physics, it is more
common to work with the free energy density, a simple rescaling of Φd:

fd(β, h) = − 1

β
Φd(β, h) = − 1

βd
logZd(β, h) (2.15)

but this is ultimately a question of taste. In the limit d→∞, we have:

lim
d→∞

−βfd(β, h) = max
m∈[−1,1]

φ(m;β, h) (2.16)

2.2 Phase transitions

The large deviation principle in Theorem 1 essentially translates the study of the high-dimensional
Boltzmann-Gibbs distribution eq. (2.2) to the study of a low-dimensional potential function φ(m) of
the macroscopic variable m ∈ [−1, 1]. We now look in detail at this problem:

max
m∈{−1,+1}

φ(m;β, h) (2.17)

Note that the maximisation problem above is a competition between a convex β/2m2 + βhm and a
concave H(m) function. In physics, these are known as the energetic and entropic contributions,
respectively.
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Figure 2: (Left) Right-hand side of (2.19) as a function of m, for fixed h = 0.5 and different values
of the inverse temperature (β solid lines). Solutions of (2.19) (dots) are given by the intersection of
f(m) = tanh(β(h+m)) with the line f(m) = m (red dashed). (Right) Same picture in terms of the
potential φ(m), where the solutions of (2.19) correspond to the global maximum of φ(m). Note that
for β � 1 an unstable solution corresponding to a minimum of φ appear.
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Figure 3: Same setting as Fig. 2, but for zero external field h = 0. For β < 1, the potential φ(m)
has only one maximum corresponding to a disordered phase m? = 0. For β > 1, the system has two
ordered ferromagnetic phases corresponding to the emergence of two symmetric global maxima ±m?.

To look for the extremisers, we take the derivative and set to zero:

∂mφ(m;β, h)
!

= 0 ⇔ β(m+ h) =
1

2
log

1 +m

1−m
(2.18)

Recognising tanh−1(x) = 1/2 log 1+x
1−x we can rewrite:

m = tanh(β(m+ h)) (2.19)

This equation, which is of the form m = f(m), is known as a self-consistent equation, does not admit
a closed-form solution. Nevertheless, it is a simple one-dimensional equation that can be easily solved
in a computer by finding the intersection between f(m) = m and f(m) = tanh(β(m+ h)), see fig. 2.

Zero external field and the second order transition

Note that at zero external field, the potential is a symmetric function of m: φ(m;β, 0) = φ(−m;β, 0).
At high-temperatures β → 0+, the entropic term dominates the potential, which has a single global
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Figure 4: (Left) Fixed point m? of the mean-field equation m = tanh(βm) above the critical tem-
perature (h = 0, β = 1.5) as a function of the inverse temperature β. Depending on the sign of the
initialisation m0, we reach one of the two global maxima of φ(m) (right).

maxima at m? = 0, see fig. 1. Recalling the definition of m, Theorem 1 tell us that with high-
probability on d, a typical sample from the Boltzmann-Gibbs distribution eq. (2.2) will have zero
averaged magnetisation (i.e. roughly same number of ±1). In physics, this is known as the paramag-
netic or disordered phase.

As the temperature β−1 is lowered, φ(0;β, 0) continuously decrease, and at β = βc = 1, m = 0
becomes a local minimum of φ(m;β, 0), with two global minimum3 emerging, see fig. 3. This is the
onset of second order phase transition towards a ferromagnetic or ordered phase. In the ferromagnetic
phase, a typical configuration of the Boltzmann-Gibbs distribution has non-zero averaged magnetisa-
tion given by |m?|, the maximisers of φ(m;β, 0).

Note that the first derivative of the free energy with respect to β (proportional to the entropy)
remains a continuous function across the transition. However, we notice that the second derivative
of the free energy is discontinuous, indicating this is a second order phase transition. This transition
corresponds to a significant change in the statistical behaviour of the system at macroscopic scales:
while for β < 1 a typical configuration from the Boltzmann-Gibbs distribution has no net magneti-
sation m? = 〈S̄〉β ≈ 0 (disordered phase), for β > 1 a typical configuration has a net magnetisation
|m?| = |〈S̄〉β| > 0 (ordered phase). This is an example of an important concept in Physics known as
spontaneous symmetry breaking : while the Hamiltonian of the system is invariant under the Z2 sym-
metry s̄ → −s̄, for β > 1 a typical draw of the Gibbs-Boltzmann distribution S ∼ PN,β breaks this
symmetry at the macroscopic level. Second order transitions carry a rich phenomenology. Since the
transition is second order (i.e. continuous first derivative), the critical temperature can be obtained
by studying the expansion of the free energy potential around m = 0:

φ(m;β, 0) =
m→0

log 2 +
m2

2
(β − 1) +O(m3)

which give us the critical βc = 1 as the point in which the second derivative changes sign (m = 0 goes
from a minimum to a maximum). It is also useful to have the picture in terms of the saddle-point
equation:

m = tanh(βm).

The fact that m = 0 is always a fixed point of this equation signals it is always an extremizer
of the free energy potential. From this perspective, the critical temperature βc = 1 corresponds to

3Note that the symmetric φ(m;β, 0) = φ(−m;β, 0) implies that except for m = 0, extremisers must always come in
pairs.
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Figure 5: (Left) Entropy as a function of the inverse temperature β at zero external field h = 0.
Note that the entropy is a continuous function of the temperature, with a cusp at the critical point
βc = 1, indicating that its derivative (proportional to the second derivative of the free energy) has
a discontinuity. (Right) Convergence time of the saddle-point equation as a function of the inverse
temperature β at zero external field h = 0. Note the critical slowing down close to the second order
critical point βc = 1.

a change of stability of this fixed point. Seeing the saddle-point equations as a discrete dynamical
system mt+1 = f(mt), the stability of a fixed point can be determined by looking at the Jacobian of
the update function f : [−1, 1]→ [−1, 1] around the fixed point m = 0:

f(x) = tanh(βx) =
m→0

βx+O(m3) (2.20)

For β < 1, the fixed point is stable (attractor/sink of the dynamics), while for β > 1 it becomes an
unstable (repeller/source of the dynamics). Note that this implies that close to the transition β ≈ 1+,
iterating the saddle point equations starting close to zero mt=0 = ε � 1 (but not exactly at zero)
takes long to converge to a non-zero magnetisation m > 0, with the time diverging as we get closer to
the transition. This phenomenon is known is physics as the critical slowing down, and together with
the expansion of the free energy and the stability analysis of the equations give yet another way to
characterise a second order critical point. See fig. 5 (right) for an illustration.

Finite external field and the first order transition

Turning on the external magnetic field h 6= 0 can dramatically change the discussion above. First, note
that the Hamiltonian loses the Z2 symmetry: this is known in Physics as explicit symmetry breaking.
At high temperatures β → 0+, the free energy potential is convex, with a single minimum at m = h
aligned with the field. As temperature is lowered and we enter what previously was the ferromagnetic
phase (β > 1), two behaviors are possible. For small h, the field simply has the effect of breaking the
symmetry between the previous two global minima and making the with opposite sign a local minimum,
see fig. 6 (left). In this situation, even though the equilibrium free energy is given by the now unique
global minimum of the potential, the presence of a local minimum has an important effect in the
dynamics. Indeed, if we initialize the saddle-point equations close to the magnetisation corresponding
to the local minimum, it will converge to this local minimum, since it is also a stable fixed point of
the corresponding dynamical system, see fig. 7 (left). This phenomenon is known as metastability in
Physics. Note that metastability can be a misleading name, since in the thermodynamic limit N →∞
metastable states are stable fixed points of the free energy potential. However, at finite system size
N , the system will dynamically reach equilibrium in a time of order t = O(eN ). Metastability will
play a major role in the Statistical Physics analysis of inference problems, since it is closely related to
algorithmic hardness.
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Figure 6: (Left) Free energy potential φ(m) as a function of m for fixed inverse temperature β = 1.5
and varying external field h < 0. Note that the free energy potential has a local maximum for |h| > hsp
that disappears at the spinodal transition h = hsp. (Right) Free energy as a function of the external
field h at different temperatures. Note the non-analytical cusp at h = 0.

As the external field h is increased, the difference in the free energy potential between the two
minima increases, and eventually at a critical field hsp, known as the spinodal point, the local minimum
disappears, making the potential convex again, see fig. 6 (left).

hsp(β) = ±

√
1

β

(
1− 1

β

)
∓ 1

β
tanh−1

(√
1− 1

β

)
, β > 1

From this discussion, it is clear that for β > 1 the magnetisation (which is the derivative of the free
entropy with respect to h) has a discontinuity at h = 0, since for h 6= 0 we have a non-zero magneti-
sation and for h = 0 we are in the paramagnetic phase h = 0. This is a first order phase transition
of the system with respect to the external field h, see fig. 6 (right). Note that as a consequence of
metastability, in the region |h| < |hsp| the system magnetisation will depend of the state in which it
was initially prepared. This memory of the initial state is known as hysteresis in Physics, see fig. 7
(right).
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Figure 7: (Left) Stable, metastable and unstable branches of the magnetisation as a function of the
external field at fixed inverse temperature β = 1.5. (Right) magnetisation obtained by iterating
the saddle-point equations from different initial conditions mt=0 as a function of the external field h
and fixed inverse temperature β = 1.5. Note the hysteresis loop: point at which the magnetisation
discontinuously jumps from negative to positive depends on the initial state of the system.
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2.3 Historical note

itJe me propose de montrer ici que l’on peut fonder une théorie du ferromagnétisme sur une
hypothèse extrêmement simple concernant ces actions mutuelles. Je suppose que chaque
molécule éprouve de la part de l’ensemble des molécules environnantes une action égale à
celle d’un champ uniforme proportionnel à l’intensité d’aimantation et de même direction
qu’elle.
Pierre Weiss, itL’hypothèse du champ moléculaire et la propriété ferromagnétique, 1907.

The Curie-Weiss model was first introduced by Pierre Weiss in (Weiss, 1907) to explain the experi-
mental observation from Pierre Curie that magnets lose their magnetic properties when heated above
a certain temperature (now known as the Curie temperature) (Curie, 1895) (a.k.a. the ferromagnetic
transition): It can be seen as a fully-connected approximation of the Ising model, although it is worth
noting the Curie-Weiss model precedes Ernst Ising’s work. (Ising, 1925).

Part II

Lecture 2 — The toolbox

Last lecture have motivated how statistical physics provides a framework to think about probability
distributions defined in high-dimensional spaces. We went in detail over one example, the Curie-Weiss
model for the ferromagnetism, and saw how a large deviation principle allow us to characterise the
high-dimensional properties of the Boltzmann-Gibbs distribution through a set of low-dimensional
self-consistent equations for the magnetization, a macroscopic variable able to summarise the phases
of the system across different temperatures. Finally, we did a historical tour over how these ideas,
initially developed to understand the collective behaviour of matter leaked to other fields where high-
dimensionality plays a central role, such as computer science, machine learning and neuroscience.

In this lecture, we turn our attention to the tools that statistical physics can offer. In particular,
we will focus on two of the most useful tools: the replica method and approximate message passing.
For concreteness, we introduce these two methods in the context of a model which will serve as the
starting point for our discussion about neural networks: the Gaussian Covariate model.

3 Gaussian covariate model

Let ui ∈ Rd and vi ∈ Rp denote i = 1, · · · , n independent jointly Gaussian vectors:

(ui,vi) ∼ N
(

0p+d,

[
1/dΨ 1/

√
pdΦ

1/
√
pdΦ> 1/pΩ

])
. (3.1)

with positive semi-definite covariance matrices Ψ ∈ Rd×d, Ω ∈ Rp×p and Φ ∈ Rp×d such that:

Tr Ψ = O(d), Tr Ω = O(p), Tr
(

Φ>Φ
)

= O(
√
dp) (3.2)

We consider the following generalised linear estimation task:

1. Data: Observations yi ∈ R are generated from the covariates ui ∈ Rd:

yi ∼ P? (·|〈β?,ui〉) , i ∈ [n] (3.3)

where β? ∈ Rd is a signal vector (which might be random or not) of norm ||β?||22 = O(d) and
p?(y|z) is a given likelihood function.
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2. Model: The goal of the statistician is to estimate the signal β? ∈ Rd from the observation of
D = {(vi, yi) ∈ Rp+1 : i ∈ [n]}. For that, she follows a Bayesian approach by postulating a
likelihood ψ(y|〈θ,v〉) and a prior distribution ϕ over Rp, and constructs the following posterior
distribution:

P (θ|D) =
1

Zp(D)
ϕ(θ)

∏
i∈[n]

ψ (yi|〈θ, vi〉) (3.4)

from which she can choose different estimators, e.g. the maximum-a-posteriori estimator θ̂map =

argmax P (θ|D) or the the posterior mean θ̂ = E[θ|D].

4! Note that the posterior distribution introduced in eq. (3.4) is itself a random quantity, since it
is a function of the data D = {(vi, yi) ∈ Rp+1 : i ∈ [n]}.
Remark 1. We assume Pβ and P? are probability densities. However, we are more flexible and don’t
necessarily require ϕ and ψ to be normalised, although the Boltzmann-Gibbs distribution is always
normalised.

Although the task above is framed in a Bayesian framework, it encompasses several problems of
interest in statistics and signal processing, both Bayesian and not. Below, we give a few examples.

Example 1 (Bayes-optimal estimation). In the best case scenario, the statistician knows exactly
the process in eq. (3.3) that generated the observed data, such as the covariates ui ∈ Rd, the signal
distribution Pβ and the likelihood P?, and the goal is to estimate the specific realisation of the signal
β? ∼ Pβ. Using this information for inference, the statistician aligns its model with the data generating
model, by doing inference directly on (ui, yi)i∈[n] (with p = d in particular) and choosing ϕ = Pβ and
ψ = P?, and therefore the Bayesian posterior reads:

P (θ|D) =
1

Zd
Pβ(θ)

n∏
i=1

P?(yi|〈θ,ui〉) (3.5)

This setting is known as Bayes-optimal inference, and information theoretically corresponds to the
best-case scenario for inference. In particular, in this case the posterior mean is known to achieve the
best possible mean-squared error, also known as minimum mean-squared error (MMSE):

mmse = min
θ̂

E
[
||β − θ(D)||22

]
= E

[
||β − E[θ|D]||22

]
(3.6)

Bayes-optimality also implies an important property known as the Nishimori identity (Nishimori, 1980;
Iba, 1999). Let θ1, . . . ,θk ∼ P (θ|D) denote k samples from the posterior distribution in eq. (3.5), and
let β? ∼ Pβ denote the signal. The Nishimori identity states that:

E [E [f(y,θ1, . . . ,θk)|D]] = E[E [(y,θ1, . . . ,β?)|D]] (3.7)

where the inner expectation is over the posterior distribution, and the outer over the data distribution.
In words: expectations over the posterior distribution are equivalent to expectation over the signal
distribution. As we will see later, this identity has important consequences in the theoretical analysis.

4! The Nishimori identities only hold in the Bayes-optimal setting. It is false for mismatched
estimation.

Example 2 (Empirical risk minimisation). Let ` : R2 → R+ denote a loss function (e.g. the square
`(y, ŷ) = 1/2(y− ŷ)2 or logistic loss `(y, ŷ) = log

(
1 + e−yŷ

)
) and r : Rd → R+ denote a regulariser (e.g.

the ridge r(θ) = λ/2||θ||22 or lasso r(θ) = ||θ||1 penalties). Then letting:

ψ(y|〈θ,v〉) ∝ eβ`(y,〈θ,v〉), ϕ(θ) ∝ eβr(θ) (3.8)
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we see that the posterior distribution in eq. (3.4) gives more weight to configurations θ ∈ Rp that have
lower empirical risk:

R̂(θ;D) =
1

n

n∑
i=1

`(yi, 〈θ,vi〉) + r(θ) (3.9)

In particular, for β →∞ the MAP estimator will coincide with the empirical risk minimiser:

θ̂ ∈ argmin
θ∈Rp

R̂(θ;D) (3.10)

Example 3 (Maximum likelihood estimation). Consider a well-specified setting where p = d and
u = v. Maximum likelihood estimation consists of taking the MAP estimator with P (y|z) = P?(y|z)
and ϕ = 1:

θ̂ = argmin− 1

n

n∑
i=1

logP?(y|〈θ,vi〉) (3.11)

4 Tool I: The replica method

The replica method is a tool originally developed in the context of statistical physics of glasses which
aims at deriving a large deviations principle of the type we have seen for the Curie-Weiss model in
Equation (2.9) for random high-dimensional probability measures, such as the posterior in eq. (3.4).

Our key goal is to compute the limiting free entropy density of the model:

Φ = lim
p→∞

1

p
ED[logZd(D)] (4.1)

where the expectation is over the data generating process:

P (D) =

n∏
i=1

P (vi, yi) = Pβ(β?)

n∏
i=1

P?(yi|〈β?,ui〉)P (ui,vi) (4.2)

and without loss of generality we considered the case where β? ∼ Pβ is random, with the deterministic
case given by Pβ(β) = δ(β − β?).

4.1 Sketch of the computation in six steps

4.1.1 Step 1: The replica trick

Except for very particular cases, taking the expectation explicitly in eq. (4.1) is not tractable. The
replica trick avoids the explicit computation of the logarithm by using the following identity:

logZp = lim
s→0+

∂sZ
s
p (4.3)

Switching the limit and the expectation, this reduces the computation of the free entropy density to
the computation of moments of the partition function Zd:

φ = lim
p→∞

1

p
lim
s→0+

∂sED[Zsd] (4.4)
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4.1.2 Step 2: Computation of moments

Integer powers of the partition function are given by:

Zsd =

(∫
Rp

dθ ϕ(θ)

n∏
i=1

ψ (yi|〈θ,vi〉)

)s
=

s∏
a=1

∫
Rp

dθa ϕ(θa)

n∏
i=1

ψ (yi|〈θa,vi〉) (4.5)

Computing a s moment of Zd is equivalent to computing the expectation over s independent copies
or replicas of the system, hence the name of the method. For that reason, we also refer to the index
a as the replica index. Now taking the expectation with respect to the data distribution eq. (4.2):

ED[Zsd] = ED

[
s∏

a=1

∫
Rp

dθa ϕ(θa)

n∏
i=1

ψ (yi|〈θa,vi〉)

]

=

∫
Rd

dβPβ(β)

∫
Rp×s

(
s∏

a=1

dθaϕ(θa)

)
n∏
i=1

∫
R

dyi E(ui,vi)

[
P? (yi|〈β,ui〉)

n∏
a=1

ψ (yi|〈θa,vi〉)

]

=

∫
Rd

dβPβ(β)

∫
Rp×s

(
s∏

a=1

dθaϕ(θa)

){∫
R

dy E(u,v)

[
P? (y|〈β,u〉)

n∏
a=1

ψ (y|〈θa,v〉)

]}n
(4.6)

where we used the assumption that the n samples (vi, yi) ∈ D are drawn independently. Note that
the likelihoods P? and ψ only depend on the Gaussian covariates (ui,vi) through the following inner
products, also known in the statistical physics jargon as the local-fields:

ν = 〈β,u〉 ∈ R, λa = 〈θ,v〉 ∈ R, a ∈ [s]. (4.7)

Conditionally on the weights β ∈ Rd and θ ∈ Rp, these s + 1 scalar quantities are jointly Gaussian
variables:

P (ν, λ1, . . . , λs|θ,β) = N
(

0s+1,

[
ρ m
m Q

])
(4.8)

where we have defined the so-called overlaps:

ρ := E[ν2] = 1/d〈β,Ψβ〉, ma := E[νλa] = 1/
√
dp〈θa,Φβ〉, Qab := E[λaλb] = 1/p〈θa,Ωθb〉 (4.9)

Note that ρ,ma, qab = O(1) due to eq. (3.2). This allow us to rewrite the average term in eq. (4.6) as:

E(u,v)

[
P? (y|〈β,u〉)

n∏
a=1

ψ (y|〈θa,v〉)

]
= E(ν,λ1,...,λs)

[
P? (y|ν)

n∏
a=1

ψ (y|λa)
∣∣∣β,θa] (4.10)

Putting together, this gives:

ED[Zsd] =

∫
Rd

dβPβ(β)

∫
Rp×s

(
s∏

a=1

dθaϕ(θa)

)
Ψ(s)
y (ρ,m,Q)n (4.11)

where we introduced:

Ψ(s)
y (ρ,m,Q) =

∫
R

dy E(ν,λ1,...,λs)

[
P? (y|ν)

n∏
a=1

ψ (y|λa)
∣∣∣β,θa] (4.12)

13



Remark 2. It is useful to stop at this point and reflect on what exactly we have achieved with this
rewriting. Initially, we had an expectation of independent replicas of the system over the high-
dimensional Gaussian covariances (u,v) ∈ Rd+p given by eq. (4.6). In eq. (4.11), we have traded this
high-dimensional Gaussian expectation for a low-dimensional4 Gaussian expectation over the Gaussian
local-fields (ν, λ1, . . . , λs) ∈ Rs+1. However, this low-dimensional expectation now correlates different
replicas through the matrix Q ∈ Rs×s.

This is a general pattern in replica computations: initially independent, replicas become correlated
after the disorder average.

4.1.3 Step 3: Energy-entropy decomposition

A close inspection of eq. (4.11) reveals that the dependency on the weights β,θa is only through the
overlap parameters (ρ,ma, Qab). Indeed, this is the only source of correlation between the expression
inside the brackets {·}n and the expectation over β and θa. The goal of this step is to decouple these
two terms.

Recall that X ∼ p is a random variable and Y = f(X) for a deterministic function f , the density
of Y reads:

p(y) = Ex[δ(y − f(x)] =

∫
dx p(x)δ(y − f(x)) (4.13)

We now apply these identities over the overlaps, which are functions of the weights. This allow us to
rewrite eq. (4.11) as:

ED[Zsd] =

∫
dρ

∫ s∏
a=1

dma

∫ s∏
a,b=1

dQab V (s)(ρ,m,Q)Ψ(s)
y (ρ,m,Q)n (4.14)

where:

V (s)(ρ,m,Q) = Eβ,θ1,...,θs

δ (ρ− 1/d〈β,Ψβ〉)
s∏

a=1

δ (ma − 1/
√
pd〈θa,Φβ〉)

s∏
a,b=1

δ
(
Qab − 1/p〈θa,Ωθb〉

)
(4.15)

Note that V (s) is a volume term which counts how many configurations of β,θ1, . . . ,θs there are with
a given overlap ρ,m,Q, similar to the term Ω in eq. (2.7) of our analysis of the Curie-Weiss model in

Section 2. Similarly, Ψ
(s)
y can be interpreted as an energetic term, and eq. (4.14) as a decomposition

of the free entropy in an energetic and an entropic contribution.
Just as in the Curie-Weiss model, we expect the number of configurations with a given overlap to be

exponential in the dimensions d, p. Therefore, we seek an exponential representation V (s)(ρ,m,Q) ∼
epS(ρ,m,Q) where S defines the entropy. For that, we use the Fourier representation of the δ-function:

δ(x− a) =

∫
dk

2π
e−ik(x−a). (4.16)

To write:

δ (ρ− 1/d〈β,Ψβ〉) = d

∫
dρ̂

2π
e−iρ̂(dρ−〈β,Ψβ〉)

s∏
a=1

δ (ma − 1/
√
pd〈θa,Φβ〉) = (dp)

s/2

∫ s∏
a=1

dm̂a

2π
e
−i

s∑
a=1

m̂a(
√
pdma−〈θa,Φβ〉)

s∏
a,b=1

δ
(
Qab − 1/p〈θa,Ωθb〉

)
= ps

2

∫ s∏
a,b=1

dQ̂ab

2π
e
−i

s∑
a,b=1

Q̂ab(pQab−〈θa,Ωθb〉)
(4.17)

4Recall we eventually want to take s→ 0+
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Therefore, up to multiplicative constants the volume term reads:

V (s)(ρ,m,Q) ∝
∫

dρ̂e−idρρ̂
∫ s∏

a=1

dm̂ae
−i
√
dp

s∑
a=1

mam̂a
∫

dQ̂abe
−ip

s∑
a,b=1

QabQ̂ab

×

× Eβ,θ1,...,θs

eiρ̂〈β,Ψβ〉+i s∑
a=1

m̂a〈θa,Φβ〉+i
s∑

a,b=1

Q̂ab〈θa,Ωθb〉
 (4.18)

Putting together, this allow us to write eq. (4.14) as the integral over an exponential:

ED[Zsd] ∝
∫

dρdρ̂

∫ s∏
a=1

dmadm̂a

∫ s∏
a,b=1

dQabdQ̂abepΦ
(s)(ρ,ρ̂,m,m̂,Q,Q̂) (4.19)

with:

Φ(s)(ρ, ρ̂,m, m̂,Q, Q̂) = −1

γ
ρρ̂− 1

√
γ

s∑
a=1

mam̂a −
s∑

a,b=1

QabQ̂ab + αΨs
y(ρ,m,Q) + Ψθ(ρ̂, m̂, Q̂)

(4.20)

where:

α = n/p, γ := p/d (4.21)

and we have defined:

Ψ
(s)
θ (ρ̂, m̂, Q̂) =

1

p
log

∫
dβPβ(β)

∫ s∏
a=1

dθaϕ(θa)

eρ̂〈β,Ψβ〉+ s∑
a=1

m̂a〈θa,Φβ〉+
s∑

a,b=1
Q̂ab〈θa,Ωθb〉

 (4.22)

Ψ(s)
y (ρ,m,Q) = log

∫
R

dy

∫
dνP? (y|ν)

∫ s∏
a=1

dλaψ(y|λa)N
(
ν,λ|0s+1,

[
ρ m
m> Q

])
(4.23)

4! Note that going from eq. (4.18) to eq. (4.20), we made a change of variables ρ̂← iρ̂, m̂a ← im̂a,

Q̂ab ← iQ̂ab. Therefore, technically speaking the integrals over the conjugate variables (ρ̂, m̂a, Q̂ab)
are over the imaginary axis iR. This will not make a difference in what follows, and could be properly
treated at the expense of a longer analysis.

4.1.4 Step 4: Saddle-point method

Although it might seem at this point that with the rewriting in eq. (4.19) we have only made the
problem more complicated by introducing integrals over the variables (ρ, ρ̂,m, m̂,Q, Q̂), as we will
see now the strength of the method is that we will never have to compute these integrals. Indeed,
under the assumption that eq. (3.2), all terms involved in eq. (4.20) are order one numbers and the
dimensions n, p, d only appear in eq. (4.20) through the ratios α = n/p and γ = p/d.

Therefore, in the scaling where the limit p → ∞ in eq. (4.1) is taken with α, γ kept fixed (a.k.a.
proportional scaling), thanks to the Saddle-point method the integrals in eq. (4.19) will be dominated
by the configurations (ρ, ρ̂,m, m̂,Q, Q̂) that extremise the potential function Φ(s). In other words,
we have:

ED[Zsd] ∼
p→∞

epΦ
(s)(ρ?,ρ̂?,m?,m̂?,Q?,Q̂?) (4.24)
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where (ρ?, ρ̂?,m?, m̂?,Q?, Q̂?) are the solutions of:

extr
ρ,ρ̂,m,m̂,Q,Q̂

−1

γ
ρρ̂− 1

√
γ

s∑
a=1

mam̂a −
s∑

a,b=1

QabQ̂ab + αΨs
y(ρ,m,Q) + Ψθ(ρ̂, m̂, Q̂)

 (4.25)

In other words, the potential function Φ(s) is exactly the rate function we are after! Note that the
overlaps (ρ, ρ̂,m, m̂,Q, Q̂) play an analogous role to the magnetisation in the Curie-Weiss model.
Therefore, in principle this give us a clear path on how to compute the free entropy: we first solve the
extremisation problem in eq. (4.25) and then take the limit s → 0+. However, the problem is that
it is not clear how to solve eq. (4.25) in general. This seems to leave us in an impasse: did we just
rewrote an initially hard problem in terms of another one?

4! When applying the saddle-point method with p → ∞, we need to assume the limit of the
entropic potential eq. (4.48) exists. This will be the cases in all particular examples we will look later,
and can be justified ad hoc.

4.1.5 Step 5: Replica symmetry

Since the extremisation problem in eq. (4.25) cannot be solved explicitly, taking the s → 0+ limit
requires making assumptions on the shape of the solution. At this point, we follow a standard idea
in physics, which consists of searching for particular classes of solution to the problem based on
our intuition. The overlaps (ρ, ρ̂,m, m̂,Q, Q̂) quantify how independent samples from the posterior
distribution are correlated, and therefore their shape encode the geometry of the high-dimensional
measure. Therefore, in the physics jargon we need an ansatz that translates how we expect the
measure to look like.

The simplest such ansatz is replica symmetry :5

ma = m m̂a = m̂

Qab =

{
r for a = b

q for a 6= b
, Q̂ab =

{
−1

2 r̂ for a = b
1
2 q̂ for a 6= b

, (4.26)

In words, replica symmetry states that in the limit d → ∞ the overlap between two independent
samples of the posterior distribution θ1,θ2 ∼ P (θ|D) will concentrate at a single value q.

4! Replica symmetry will not hold in general. In particular, for some problems it can hold in a
range of parameters, but not for others. There is a well-defined recipe in statistical physics to check
when replica symmetry holds and to deal with cases which are not replica symmetric, known as the
replica symmetry breaking scheme (Mézard et al., 1987).

There are two particular sub-classes of the model above for which replica symmetry can be proved
to hold:

(a) In the Bayes-optimal scenario discussed in example 1. This is a consequence of the Nishimori
identities eq. (3.7), see (Barbier et al., 2019; Barbier and Panchenko, 2022) for a formal proof.

(b) In convex optimisation problems, such as empirical risk minimisation example 2 with convex
empirical risk and for and maximum likelihood estimation example 3 with log-concave likelihood,
replica symmetry holds due to the convexity of the problem (Loureiro et al., 2021).

From now on we now assume we are in one of these scenarios.

5Note the factor −1/2 in r̂ is just for convenience.
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Trace terms — We start by looking at the simplest terms, the sums in eq. (4.25). Under the replica
symmetric assumption, we have:

s∑
a=1

m̂ama = sm̂h

s∑
a,b=1

Q̂abQab =
s∑

a=1

Q̂aaQaa +
s∑
a6=b

Q̂abQab = −s
2
r̂r +

s(s− 1)

2
q̂q (4.27)

Therefore, these are easy terms to take the limit.

Entropic potential — Consider now the entropic potential eq. (4.48). First, note we can write:

s∑
a,b=1

Q̂ab〈θa,Ωθb〉 = − r̂
2

s∑
a=1

〈θa,Ωθa〉+
q̂

2

s∑
a6=b
〈θa,Ωθb〉 (4.28)

= − r̂ + q̂

2

s∑
a=1

〈θa,Ωθa〉+
q̂

2

s∑
a,b

〈θa,Ωθb〉 (4.29)

where in the second equality we have added and subtracted the diagonal. Therefore:

Ψθ =
1

p
log

∫
dβPβ(β) eρ̂〈β,Ψβ〉

∫ s∏
a=1

dθaϕ(θa)e
m̂

s∑
a=1
〈θa,Φβ〉− ˆr+q̂

2

s∑
a=1
〈θa,Ωθa〉+ q̂

2

s∑
a,b=1

〈θa,Ωθb〉
(4.30)

=
1

p
log

∫
dβPβ(β)eρ̂〈β,Ψβ〉

∫ [ s∏
a=1

dθaϕ(θa)em̂
s〈θa,Φβ〉− r̂+q̂

2
〈θa,Ωθa〉

]
e

q̂
2

s∑
a,b=1

〈θa,Ωθb〉
(4.31)

Note that all terms factorise over the replica indices, except the last. To factorise it, we use a common
trick in physics known as the Hubbard-Stratonovich transformation:

e

q̂
2

s∑
a,b=1

〈θa,Ωθb〉
= Eξ∼N (0p,Ip)

[
e

√
q̂

s∑
a=1
〈ξ,Ω1/2,θa〉

]
(4.32)

where Ω1/2 is the matrix square-root of Ω.6 Putting together, we have:

Ψ
(s)
θ =

1

p
log

∫
dβPβ(β)eρ̂〈β,Ψβ〉Eξ

(∫
dθϕ(θ)e−

r̂+q̂
2
〈θ,Ωθ〉+m̂〈θ,Φβ〉+√q〈ξ,Ω1/2θ〉

)s
(4.33)

Energetic potential — For the energetic potential in eq. (4.49), we need to decouple a Gaussian
distribution with the following block covariance matrix:

Σ =

[
ρ m
m> Q

]
=

[
ρ m1s

m1>s (r − q)Is + q1s1
>
s

]
(4.34)

Exercise 2. (a) Using the block inversion formula eq. (B.4), show that we have:

Σ−1 =

[
ρ̃ m̃1s

m̃1>s (r̃ − q̃)Is + q̃1s1
>
s

]
(4.35)

with:

ρ̃ =

(
ρ− sm2

r + (s− 1)q

)−1

, r̃ =
1

r − q

(
1 +

m2 − ρq
ρ(r + (s− 1)q)− sm2

)
m̃ = − m

ρ(r + (s− 1)q)− sm2
, q̃ =

1

r − q
m2 − ρq

ρ(r + (s− 1)q)− sm2
(4.36)

6Note this is well defined since Ω is positive semi-definite.
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(b) Show that:

det Σ = (r − q)s−1(ρ(r + (s− 1)q)− sm2) (4.37)

(c) By using a Hubbard-Stratonovich transformation, show that you can write:

Ψ(s)
y (ρ,m,Q) = log

∫
dy

∫
dνP?(y|ν)e−

ρ̃
2
ν2
(∫

dλψ(y|λ)e−
r̃−q̃
2
λ2+(

√
−q̃η+m̃ν)λ

)s
− 1

2
log det(2πΣ) (4.38)

4.1.6 Step 6: Taking the limits

Now that all the dependency in s is explicit, we can proceed in taking the s → 0+ limit. First, note
that at zeroth order we have:

Φ(s) = −1

γ
ρρ̂+

1

p
log

∫
dβPβ(β)eρ̂〈β,Ψβ〉 +O(s) (4.39)

But Z0
d = 1, and therefore by consistency we must have lim

s→0+
Φ(s) = 0. This implies that ρ̂ = 0, which

due to the extremisation in eq. (4.25) fixes the constraint:

ρ = lim
d→∞

1

d
Eβ[〈β,Ψβ〉]. (4.40)

This is nothing but our original definition of ρ. Therefore, consistency implies ρ is not a fluctuating
variable but simply a constant. We can now move to the first order terms. First, taking the limit on
the entropy term:

Φθ := lim
s→0+

∂sΨ
(s)
θ =

1

p
Eξ,β log

∫
dθϕ(θ)e−

r̂+q̂
2
〈θ,Ωθ〉+m̂〈θ,Φβ〉+√q〈ξ,Ω1/2θ〉 (4.41)

Exercise 3. (a) show that:

Φy := lim
s→0+

∂sΨ
(s)
y = Eη

∫
dy

∫
dν√
2π
e−

1
2
ν2P?(y|ρν) log

∫
dλ

2π
e
− 1

2
λ2

r−q+

(
mν+

√
q−m2

ρ
η

)
λ
r−q

ψ(y|λ)

− 1

2

q

r − q
(4.42)

4! Be careful since the exponential inside the (·)s is also a function of s.

(b) By making a change of variables, show we can also write the above in the following symmetric
form:

Φy(m, q, r) = lim
s→0+

∂sΨ
(s)
y = Eη

∫
dyZ?

(
y,
m
√
q
η, ρ− m2

q

)
logZy(y,

√
qη, r − q) (4.43)

with η ∼ N (0, 1) and:

Zy(y, ω, v) = Ez∼N (ω,v)[ψ(y|z)], Z?(y, ω, v) = Ez∼N (ω,v)[P?(y|z)] (4.44)

(c) Similarly, show that with a change of variables we can also write the entropic potential in the
following symmetric form:

Φθ(m̂, q̂, r̂) =
1

p
Eξ
[
Zβ

(
m̂(q̂Ω)−

1/2ξ, m̂2(q̂Ω)−1
)

logZθ

(
(q̂Ω)

1/2ξ, (r̂ + q̂)Ω
)]

(4.45)

with ξ ∼ N (0, Ip) and:

Zβ(b,A) =

∫
dβPβ(β)e−

1
2
〈β,Aβ〉+〈b,β〉, Zθ(b,A) =

∫
dθϕ(θ)e−

1
2
〈θ,Aθ〉+〈b,θ〉 (4.46)
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4.2 Replica symmetric free entropy

Putting together the different pieces from the previous sessions, we can conclude that in the high-
dimensional limit p→∞, the replica symmetric free entropy density can be written as:

φ = lim
p→∞

1

p
E logZd = extr

m,q,r
m̂,q̂,r̂

Φ :=

{
− 1
√
γ
mm̂+

1

2
qq̂ +

1

2
rr̂ + αΦy(m, q, r) + Φθ(m̂, q̂, r̂)

}
(4.47)

with:

Φθ(m̂, q̂, r̂) = lim
p→∞

1

p
Eξ,β log

∫
dθϕ(θ)e−

r̂+q̂
2
〈θ,Ωθ〉+m̂〈θ,Φβ〉+

√
q̂〈ξ,Ω1/2θ〉 (4.48)

Φy(m, q, r) = Eη
∫

dyZ?

(
y,
m
√
q
η, ρ− m2

q

)
logZy(y,

√
qη, r − q) (4.49)

where η ∼ N (0, 1), ξ ∼ N (0, Ip) and β ∼ Pβ, all independent and the effective partition functions
Zy/? are defined in eq. (4.44).

Remark 3. The variables r, r̂ only appear in eq. (4.47) through the combinations r − q and r̂ + q̂.
Therefore, it is common to define v = r − q and v̂ = r̂ + q̂ and rewrite:

φ = extr
m,q,v
m̂,q̂,v̂

{
− 1
√
γ
mm̂+

1

2
vv̂ +

1

2
(qv̂ − vq̂) + αΦy(m, q, v) + Φθ(m̂, q̂, v̂)

}
(4.50)

The variable v has also a more natural interpretation as the normalised variance of the posterior
distribution. Indeed, letting θ ∼ P (θ|D), and denoting the average with respect to the posterior
P (θ|D) with brackets 〈·〉:

lim
p→∞

1

p
Var(θ) = lim

p→∞

1

p

[
〈||θ||22〉 − ||〈θ〉||22

]
= r − q := v (4.51)

Let’s stop to contemplate what we have achieved. We have reduced the computation of the
logarithm of a high-dimensional integral to a low-dimensional extremisation problem over 6 variables
(m, q, r, m̂, q̂, r̂), under (almost) arbitrary prior Pβ, ϕ and likelihood P?, ψ functions, covering problems
that go from empirical risk minimisation to Bayesian inference. Deriving a formula with such a scope
is a quite remarkable achievement. Indeed, none of the rigorous constructive methods available in the
literature - such as interpolation or CGMT - cover all these different settings under the same method.

Remark 4. The replica method involve a series of manipulations which might leave a mathematician
uncomfortable. Most of them can be made properly justified with some additional work, except for
two of them:

• The exchange of the p→∞ and the s→ 0+ limit when we applied the saddle-point method in
eq. (4.24)

• The fact that we computed the moments ED[Zsd] only for integers values of s ∈ N, and then
(carelessly) analytically continued to s ∈ R+ to take the s→ 0+ limit.

These are the main reasons why it remains a heuristic tool and not a rigorous method.

Remark 5. The saddle-point method only give us an extremiser, and does not specify whether they
are minima or maxima of the potential function. In particular problems where replica symmetry holds
and a rigorous proof for this formula are available, such as Bayes-optimal estimation with isotropic
covariates (Barbier et al., 2019) or convex empirical risk minimisation with convex risk (Loureiro et al.,
2021), it can be shown that the extremisation problem take the form of sup inf problem:

φ = sup
q,m,r∈R+

inf
m̂,q̂,v̂∈R+

Φ(m, q, v, m̂, q̂, v̂) (4.52)
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4.3 Self-consistent equations

By definition, extremisers (m?, q?, r?, m̂?, q̂?, r̂?) ∈ R6
+ of the potential in equation eq. (4.50) are zero-

gradient points:

∇(m,q,v,m̂,q̂,v̂)Φ
!

= 0 (4.53)

This leads to the following equations:
v = 2∂q̂Φθ(m̂, q̂, v̂)

q = −2 (∂q̂Φθ(m̂, q̂, v̂) + ∂v̂Φθ(m̂, q̂, v̂))

m =
√
γ∂m̂Φθ(m̂, q̂, v̂)

,


v̂ = −2α∂qΦy(m, q, v)

q̂ = 2α (∂vΦy(m, q, v)− ∂qΦy(m, q, v))

m̂ =
√
γ∂mΦy(m, q, v)

(4.54)

Although more cumbersome, the self-consistent equations above are of similar spirit to the self-
consistent equation m = tanh(β(m+ h)) we found for the magnetisation in the Curie-Weiss model in
Section 2.

Exercise 4. 1. From the symmetric form in eq. (4.43), show that the self-consistent equations for
the conjugate variables can be explicitly written as:

v̂ = −αEη
∫

dyZ?

(
y,
m
√
q
η, ρ− m2

q

)
∂ωfy(y,

√
qη, v) (4.55)

q̂ = αEη
∫

dyZ?

(
y,
m
√
q
η, ρ− m2

q

)
fy(y,

√
qη, v)2 (4.56)

m̂ = αEη
∫

dyZ?

(
y,
m
√
q
η, ρ− m2

q

)
fy(y,

√
qη, v) (4.57)

where:

fy(y, ω, v) = ∂ω logZy(y, ω, v) (4.58)

with Z?/y(y, ω, v) defined in eq. (4.44).

2. Similarly, show that the self-consistent equations for the overlaps can be written as:

v = Eξ,β
[
∇b · fθ

(
m̂β + (q̂Ω)

1/2ξ, v̂Ω
)]

(4.59)

q = Eξ,β
[
||fθ

(
m̂β + (q̂Ω)

1/2ξ, v̂Ω
)
||22
]

(4.60)

m = Eξ,β
[
〈fθ

(
m̂β + (q̂Ω)

1/2ξ, v̂Ω
)
,β〉
]

(4.61)

where:

fθ(b,A) = ∇b logZθ(b,A) (4.62)

with Zθ(b,A) defined in eq. (4.46).

Solving self-consistent equations numerically — Except for very particular cases the self-
consistent equations eq. (4.54) do not admit an explicit closed-form solution, and most of the times
we look for solutions numerically. The most common approach to solve these equations numerically
consists of iteratively applying them xt+1 = f(xt) from an initial condition x0.

4! When the map f(x) is contractive f(xt) < f(xt+1), we are guaranteed to find a unique
solution to the equation xt+1 = f(xt), independently from x0. Note this is intimately connected to
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the convexity of the free entropy potential Φ in the extremisation problem in eq. (4.47). However,
in general the potential will not be a convex function of the overlaps parameters, and therefore the
solution is not guaranteed to be unique. In fact, since the equations eq. (4.47) are derived from
gradient descent on Φ, in case Φ is not convex the iterative solution will converge to the closest
extremal point. As we discussed in the context of the Curie-Weiss model in Section 2, the existence
of different extremal points of Φ is closely related to the existence of phase transitions in the problem.

4.4 Case study 1: Bayes-optimal inference

We now turn our attention to particular cases where the free entropy potential and the self-consistent
equations can be further simplified. The first example if Bayes-optimal inference, which we introduced
in Example 1. Recall that in this case we have p = d, v = u ∈ Rd and matched likelihood and priors:

ϕ = Pβ, ψ = P?. (4.63)

In this case, applying the Nishimori identity eq. (3.7) to the overlaps imply:

q = m, q̂ = m̂, v = ρ−m, v̂ = q̂. (4.64)

such that the only two independent variables m, m̂. The free entropy extremisation problem simplifies
to:

φ = extr
m,m̂
{−mm̂+ αΦy(m) + Φθ(m)} (4.65)

with:

Φy(m) = Eη
∫

dy Z?(y,
√
qη, ρ−m) logZ?(y,

√
qη, ρ−m) (4.66)

Φθ(m̂) = Eη,β logZβ

(
m̂Ωβ + (q̂Ω)

1/2ξ, m̂Ω
)

(4.67)

where η ∼ N (0, 1), ξ ∼ N (0, Id) and:

Z?(y, ω, v) = Ez∼N (ω,v)[P?(y|z)], Zβ(b,A) =

∫
dβPβ(β)e−

1
2
〈β,Aβ〉+〈b,β〉 (4.68)

Therefore, the self-consistent equations eq. (4.54) also reduce to:

m̂ = αEη
∫

dy Z?
(
y,
√
mη, ρ−m

)
f?(y,

√
mη, ρ−m) (4.69)

m = Eξ,β
[
〈fβ

(
m̂β + (m̂Ω)

1/2ξ, m̂Ω
)
,β〉
]

(4.70)

The free entropy and self-consistent equations for Bayes-optimal estimation were first derived in the
isotropic case Ω = Ip for the linear likelihood P?(y|z) = N (y|z, σ2) in (Krzakala et al., 2012a,b), and
later generalised and rigorously proven by (Barbier et al., 2019). This was extended in (Clarté et al.,
2023) to the non-isotropic case.

4.5 Case study 2: Empirical risk minimisation

Consider now the empirical risk minimisation case with convex loss function ` and penalty r, introduced
in Example 2. In this case, we have:

ϕ(θ) = eβr(θ), ψ(y|z) = eβ`(y,z). (4.71)
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and our interest is in the case where β → ∞, where the posterior shrinks to the (unique) empirical
risk minimiser. Focusing on the energetic terms, note that we have:

Zy(y, ω, v) = Ez∼N (ω,v)[Py(y|z)] =

∫
dz√
2πv

e−
(z−ω)2

2v
−β`(y,z) (4.72)

To take the limit β → ∞, we need to know how the parameters (m, q, v, m̂, q̂, v̂) ∈ R6
+ scale with β.

We posit the following scaling:

v =
v0

β
, q = q0, m = m0 (4.73)

v̂ = βv̂0, q̂ = β2q̂0, m̂ = βm̂0 (4.74)

where (m0, q0, v0, m̂0, q̂0, v̂0) are do not scale with β. Note that the scaling of the overlaps are intuitive:
since v is the asymptotic value of the variance of the posterior (see Remark 3) and the posterior shrinks
as β → ∞, it is reasonable that it vanishes with β. On the same note, we expect q,m to not scale
with β, since they parametrise the norm and correlation of a typical sample of the posterior with the
signal. The scalings for the conjugate variables can then be found by inspection of the self-consistent
equations eq. (4.55). With these in hand, we note that:

Zy(y,
√
qη, v) =

∫
dz√

2πv0/β
e
−β
(

(z−√q0η)
2

2v0
+`(y,z)

)
(4.75)

Applying Laplace’s method, we have:

Zy(y,
√
qη, v) ∼

β→∞
e
−βM

v0`(y,)̇
(
√
q0η)

(4.76)

where Mτf (x) is the Moreau envelope:

Mτf (x) = min
z∈R

{
(z − x)2

2τ
+ `(y, z)

}
(4.77)

Inserting this in the energetic potential eq. (4.49):

Φy(m, q, r) ∼
β→∞

−β Eη
∫

dyZ?

(
y,
m0√
q0
η, ρ− m2

0

q0

)
M

v0`(y,)̇
(
√
q0η) (4.78)

The entropic term requires a bit more work. First, we complete the squares and write:

Zθ(b,A) = e−
1
2
〈b,A−1b〉

∫
dθϕ(θ)e−

1
2
||A1/2θ−A−1/2b||22 (4.79)

Since in eq. (4.49) we need to evaluate:

b = m̂β + (q̂Ω)
1/2ξ = β

(
m̂0β + (q̂0Ω)

1/2ξ
)

:= βb0

A = v̂Ω = β(v̂0Ω) := βA0 (4.80)

therefore:

Zθ(m̂β + (q̂Ω)
β/2ξ, q̂Ω) = e−

1
2
〈b0,A−1

0 b0〉
∫

dθe
−β
(
r(θ)+ 1

2
||A1/2

0 θ−A−1/2
0 b||22

)
(4.81)

∼
β→∞

e−
β
2
〈b0,A−1

0 b0〉e
−βM

r(A
−1/2
0 ·)

(A
−1/2
0 b0)

(4.82)
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where Mτf (x) is the vector valued Moreau envelope:

Mτf (x) = min
z∈Rp

{
− 1

2τ
||z − x||22 + f(z)

}
(4.83)

Inserting this in the entropic potential eq. (4.48):

Φθ(m̂, q̂, v̂) ∼
β→∞

−β
p
Eξ,β

[
Mr((v̂0Ω)−1/2·)

(
(v̂0Ω)−

1/2
(

(q̂0Ω)
1/2ξ + m̂0β

))]
− β

2p
Eβ,ξ

[
〈(q̂0Ω)

1/2ξ + m̂0β, (v̂0Ω)−1((q̂0Ω)
1/2ξ + m̂0β)

]
(4.84)

= −β
p
Eξ,β

[
Mr((v̂0Ω)−1/2·)

(
(v̂0Ω)−

1/2
(

(q̂0Ω)
1/2ξ + m̂0β

))]
− β

2

(
q̂0

v̂0
+
m̂2

0

v̂0
Eβ
[
〈β,Ω−1β〉

p

])
(4.85)

Putting together, we see that the free entropy scales as β as β → ∞. For this reason, it is more
convenient to look at the free energy instead:

fβ = −φ
β

(4.86)

Which at zero temperature is given by:

lim
β→∞

fβ = extr
m,q,v
m̂,q̂,v̂

{
1
√
γ
mm̂− 1

2
(qv̂ − vq̂) + αΦy(m, q, v) + Φθ(m̂, q̂, v̂)

}
(4.87)

where we have dropped the 0 subscript to alleviate the notation and have:

Φy(m, q, v) = Eη
∫

dyZ?

(
y,
m
√
q
η, ρ− m2

q

)
Mv0`(y,·) (

√
qη)

Φθ(m̂, q̂, v̂) = Eξ,β

[
Mr((v̂0Ω)−1/2·)

(√
q̂

v̂
ξ +

m̂√
v̂
Ω−

1/2β

)]
+

q̂

2v̂
+
m̂2

2q̂
Eβ
[
〈β,Ω−1β〉

p

]
(4.88)

Note that for notational convenience we have absorbed the sign in the energetic and entropic potentials
in the extremisation problem.

4! The term vv̂ does not scale with β, and therefore is subleading in the free energy density
eq. (4.87).

Exercise 5. Show, either by taking the β →∞ limit of the self-consistent equations eq. (4.54) or by
using the following identities:

∇xMτf (x) =
1

τ

(
x− proxτf (x)

)
, ∂τMτf (x) = − 1

2τ2
||x− proxτf (x)||22 (4.89)

with proxτf (x) the proximal operator:

proxτf (x) = argmin
z∈Rp

(
1

2τ
||z − x||22 + f(z)

)
(4.90)
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That the self-consistent equations for (convex) empirical risk minimisation can be written as:
v̂ = −αEη

∫
dyZ?

(
y, m√qη, ρ−

m2

q

)
∂ωfy(y,

√
qη, v)

q̂ = αEη
∫

dyZ?

(
y, m√qη, ρ−

m2

q

)
fy(y,

√
qη, v)2

m̂ = αEη
∫

dyZ?

(
y, m√qη, ρ−

m2

q

)
fy(y,

√
qη, v)

(4.91)


v = Eξ,β

[
∇b · fθ

(
m̂β + (q̂Ω)1/2ξ, v̂Ω

)]
q = Eξ,β

[
||fθ

(
m̂β + (q̂Ω)1/2ξ, v̂Ω

)
||22
]

m = Eξ,β
[
〈fθ

(
m̂β + (q̂Ω)1/2ξ, v̂Ω

)
,β〉
] (4.92)

with:

fy(y, ω, v) =
1

v

(
ω − proxv`(y,·)(ω)

)
(4.93)

fθ(b,A) = proxr(A−1/2·)(A−
1/2b) (4.94)

The asymptotic free energy density and self-consistent equations for convex (empirical) risk minimi-
sation on the Gaussian covariate model were derived and proven by Loureiro et al. (2021).

Remark 6. The Moreau envelope and the proximal operator are standard objects in the field of convex
optimisation, where they are related to an optimisation algorithm known as the proximal method, see
e.g. (Boyd and Vandenberghe, 2004). Although this might sound like a curiosity at this point, their
appearance in the context of the replica method will become clear when we discuss Approximate
Message Passing.

Bibliographical notes

It is unclear when exactly the replica trick was first used. In the context of spin glasses, it was
introduced by Edwards and Anderson (1975). The first replica computation for the teacher-student
generalised linear models is due to Gardner and Derrida (1989). The computation discussed here for
a general Gaussian Covariate model appeared in (Loureiro et al., 2021).

5 Tool II: Approximate Message Passing

So far our discussion focused on the mathematical study of high-dimensional probability distributions,
be it the Curie-Weiss Boltzmann-Gibbs distribution eq. (2.2) or the posterior distribution eq. (3.4) of
the Gaussian covariate model. In the statistical physics jargon, we were interest in the equilibrium
properties of the distribution. The key idea was to identify a set of summary statistics of the problem
which can be asymptotically determined in a self-consistent way, without ever having to sample from
the high-dimensional measure itself.

However, in many cases we might want to sample a configuration from the Boltzmann-Gibbs or
posterior distribution. In other words, an algorithm that given the likelihood and priors (or Hamilto-
nian) of the problem, returns a sample θ ∼ P (θ|D).

Sampling from a high-dimensional probability measure is in general a hard problem, which in the
worst case requires exponential computational cost in the dimension of the problem. And indeed,
developing efficient algorithms for sampling is an active research field. However, can we leverage the
asymptotic equilibrium properties we have learned from our analysis to help sampling? The answer
is yes, and this is the key idea behind the Approximate Message Passing (AMP) algorithm.

But before delving into AMP, it will be instructive to go look back at the Curie-Weiss model.
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5.1 Sampling from the Curie-Weiss model

Of course, not all measures are amenable to such a treatment. Indeed, the problems we have looked
so far are mean-field : the interactions between different variables in the problem is both homogeneous
and weak. As a concrete example, consider the Curie-Weiss Hamiltonian eq. (2.1):

H(s) = − 1

2d
−

1

d

d∑
j=2

sj + h

 s1 −
1

2d

d∑
i,j=2

sisj − h
d∑
i=2

si

= −

1

d

d∑
j=2

sj + h

 s1 +H−1(s)− 1

2d
(5.1)

where we decomposed in the terms interacting with spin i = 1 and the rest. Fist, note that spin s1

interacts with all the other spins only through the averaged magnetisation 1/d
∑d

j=2 sj = s̄ + O(1/d),
which plays a similar role to the external field h. Moreover, each spin contributes to the sum with a
O(1/d) - but their sum that creates a O(1) effect. Hence the name mean-field. The weak correlation
between variables imply that the Boltzmann-Gibbs distribution almost factorises. To see this, apply
a Hubbard-Stratonovich transformation:

P(S = s) =
1

Zd
e

β
2d

(
d∑
i=1

si

)2

+βh
d∑
i=1

si
=

1

Zd

∫
dξ√
2π/βd

e−
βd
2
ξ2

d∏
i=1

eβ(ξ+h)si (5.2)

Defining the following conditional distribution:

P(S = s|ξ) =
eβ(ξ+h)s∑

s∈{−1,+1} e
β(ξ+h)s

=
eβ(ξ+h)s

2 cosh(β(ξ + h))
(5.3)

we can exactly rewrite the above as:

P(S = s) =

∫
dξ π(ξ)

d∏
i=1

P(Si = si|ξ) (5.4)

with:

π(ξ) =
1

Zd

√
βd

2π
e−

βd
2
ξ2+d log 2 cosh(β(ξ+h)) (5.5)

Therefore, conditionally on the field Hubbard-Stratonovich field ξ ∼ π, the Boltzmann-Gibbs
distribution factorises P(S = s|ξ) =

∏d
i=1 P(Si = si|ξ). This means that the correlation between the

spins are parametrised by a single Gaussian variable. Moreover, note that the variance of ξ is of order
O(1/d), and therefore in the high-dimensional limit d→∞, ξ concentrates:

ξ? ∈ argmin
ξ∈R

{
β

2
ξ2 − log 2 cosh(β(ξ + h))

}
(5.6)

Looking for zero gradient points recovers the self-consistent equation ξ = tanh(β(ξ + h)) that we had
found for the magnatisation in Section 2.1. This show us explicitly that the magnetisation is enough
to fully characterise the correlations between spins in the high-dimensional limit. Moreover, it give us
a very efficient algorithm to sample from the high-dimensional Boltzmann-Gibbs distribution:

1. Solve eq. (5.6) and find ξ?.

2. Sample every spin Si ∼ Rad(p) i.i.d. with probability:

P(S = +1|ξ?) =
eβ(ξ? + h)

2 cosh(β(ξ? + h))
(5.7)
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Algorithm 1: GAMP

Input: Data V ∈ Rn×p, y ∈ Rn, denoisers fy, fθ, initial condition θ̂0.

Define V 2 = V � V ∈ Rn×p and Initialize θ̂t=0 = θ̂0, ĉt=0 = 1d, g
t=0 = 0n.

for t ≤ T do
vt = V 2ĉt ; ωt = V θ̂t − vt � gt−1 ; /* Update likelihood mean and variance */
gt = fy(y,ω

t,vt) ; ∂gt = ∂ωfy(y,ω
t,vt) ; /* Update likelihood */

At = −V 2>∂gt ; bt = V >gt +At � θ̂t ; /* Update prior mean and variance
/* Update marginals */
θ̂t+1 = fθ(bt,At) ; ĉt+1 = diag(∇bfθ(bt,At))

end for
Return: Estimators (θ̂amp, ĉamp) := (θ̂T , ĉT ).

5.2 Generalised approximate message passing

The Generalised Approximate Message Passing (GAMP) algorithm 1 is an iterative algorithm specially
tailored for the GLM posterior distribution eq. (3.4). It takes as an input the training data (V ,y) ∈
Rn×p×Rn and returns (θ̂amp, ĉamp), which corresponds to an estimation of the posterior mean E[θ|D]
and variance Var(θ|D). It belongs to the class of first-order methods, a class of algorithms that involve
only matrix multiplication and entry-wise operations. Therefore, its a very efficient algorithm with
running time complexity is O(np), linear in the size of the matrix. The functions fθ, fy, also refereed
to as denoisers, are connected to the likelihood and prior:

fy(y, ω, v) =
Ez∼N (ω,v)

[
(z−ω)
v ψ(y|z)

]
Ez∼N (ω,v) [ψ(y|z)]

, fθ(b,A) =

∫
dθϕ(θ)θe−

1
2
〈θ,Aθ〉+〈b,θ〉∫

dθϕ(θ)e−
1
2
〈θ,Aθ〉+〈b,θ〉

(5.8)

Remark 7. One of the central properties of AMP we will discuss below, the state evolution equations,
will follow under minimal assumptions on the denoisers. Therefore, one can in principle consider AMP
iterations with other denoiser functions, in which case the estimators θ̂amp, ĉamp will not necessarily
correspond to an estimate of the posterior mean and variance.

Although the GAMP algorithm 1 might look mysterious at a first sight, it can be derived from first
principles from a reduction of Belief Propagation, a well-known algorithm for inference on graphical
models. We refer the interested reader to Appendix D for a detailed discussion of this derivation.
Instead, we dedicate this section to building intuition on GAMP.

GAMP approaches the generalised linear estimation problem, i.e. the problem of estimating a
signal β? ∼ Pβ from observations yi ∼ P (y|〈β?,ui〉), by decomposing it in two parts:

(a) Estimating the pre-activations νi = 〈β?,ui〉 from the observations yi ∼ P (·|νi). Note this is a
one-dimensional denoising problem.

(b) The estimation of signal β? ∈ Rd from the pre-activations ν = Uβ? ∈ Rn. Note this is a
high-dimensional but linear inverse problem.

A forward pass of GAMP corresponds precisely that. Given a current estimate (θ̂t, ĉt) of the pos-
terior mean and variances, it starts by computing an estimate for the mean and variance of the
pre-activations:

ωt = V θ̂t − vt � gt−1, vt = V 2ĉt. (5.9)

The term vt � gt−1 is known as the Onsager term, and plays a fundamental role in the algorithm.
Indeed, a key property of GAMP is that at every step t < T , the pre-activations ωt are jointly Gaussian
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variables with the ground truth pre-activations ν = V β?. This non-trivial property holds thanks to
the presence of the Onsager term. To see this, consider the naive estimator for the pre-activation
ω̃t = V θ̂t. At step t = 0, assuming that θ̂0 is initialised independently from V , ω0 is a sum of
independent random variables with variance O(1/p), and therefore it is asymptotically Gaussian by
the central limit theorem. However, at step t = 1 we have:

ω̃1 = V θ̂1 (5.10)

Following the steps of the algorithm, we see that θ̂1 = θ̂1(V ) and hence θ̂1 is not independent from V ,
hence we cannot iterate the CLT argument. The fact that the algorithm “sees” the same covariates
V at every step builds correlations over the time. As it can be shown by carefully tracking the
correlations through the updates, the role of the Onsager term is precisely to remove them at every
step.

5.2.1 State evolution

The joint Gaussianity of the pre-activations (ν,ωt) at every step can be propagated through the
algorithm, implying that we can also characterise the distribution of the AMP estimation of the
marginals mean θ̂t and variance ĉt. Remarkably, it can be shown that in the proportional high-
dimensional limit the AMP iterations can be consistently closed on a set of 6 statistics that fully
characterise the distribution of the AMP variables:

v̂t = −αE(ν,ωt)[∂ωfy(f?(ν), ωt, vt)]

q̂t = αE(ν,ωt)[fy(f?(ν), ωt, vt)2]

m̂t = αE(ν,ωt)[∂νfy(f?(ν), ωt, vt)]

,


vt+1 = Eξ,β?

[
∇b · fθ(

√
Ωq̂tξ + m̂tβ?,Ωv̂

t)
]

qt+1 = Eξ,β?
[
||fθ(

√
Ωq̂tξ + m̂tβ?,Ωv̂

t)||2
]
,

mt+1 = Eξ,β?
[
〈fθ(

√
Ωq̂tξ + m̂tβ?,Ωv̂

t),β?〉
]

(5.11)

where β? ∼ Pβ, ξ ∼ N (0p, Ip) and the likelihood P? is parametrised by y = f?(ν) with:

(ν, ωt) ∼ N
(

02,

[
ρ mt

mt qt

])
(5.12)

These equations are known as the state evolution equations. The quantities (mt, qt, vt, m̂t, q̂t, v̂t) are
directly related to the statistics of the GAMP iterates:

• The quantities (mt, qt, vt) track the following statistics:

mt = lim
p→∞

E[νiω
t
i ] = lim

p→∞
E

[
〈θ̂t,β?〉

p

]
, (5.13)

qt = lim
p→∞

E[(ωti)
2] = lim

p→∞
E

[
||θ̂t||22
p

]
, (5.14)

vt = lim
p→∞

E
[
〈1p, ĉt〉
p

]
(5.15)

• The quantities (m̂t, q̂t, v̂t) are related to the statistics of the GAMP messages btk,A
t
k. More

specifically, we can show that asymptotically in p→∞:

btk ∼ m̂tβ? +
√

Ωq̂ξ, At ∼ v̂tΩ (5.16)

with ξ ∼ N (0, Ip) and β? ∼ Pβ independently.
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• Together, this implies that we asymptotically have the following characterisation of the AMP
estimation of the posterior mean and variance:

θ̂amp = fθ(m̂tβ? +
√

Ωq̂ξ, v̂tΩ) ∈ Rp (5.17)

ĉamp = diag(∇bfθ(m̂tβ? +
√

Ωq̂ξ, v̂tΩ)) ∈ Rp (5.18)

where diag(·) is the diagonal operator taking a matrix A ∈ Rp×p to its diagonal diag(A) ∈ Rp

One should stop and appreciate that the fact that the statistics of GAMP can be asymptotically
tracked by a low-dimensional, deterministic dynamical system without ever having to run it is quite
remarkable. Indeed, most algorithms in machine learning, such as gradient descent or Langevin
dynamics, don’t admit such a simple descriptions, even for simple mean-field models.

5.2.2 Relationship with replicas

The attentive reader probably already realised that the state evolution eq. (5.11) are very similar to
the replica self-consistent equations in eq. (4.91). Indeed, a simple change of variable reveals that
these equations are identical up to the presence of time indices.

This simple observation has an important consequence: the trajectory of the AMP statistics
(mt, qt, vt, m̂t, q̂t, v̂t) is performing gradient descent on the replica symmetric free energy potential
eq. (4.50). In other words, on the space of the overlaps the AMP minimisation landscape the replica
symmetric free energy landscape. This connection between AMP and the Bethe-Peierls approximation
for the free energy (Bethe, 1935).

As we will discuss in Section 6, this relationship will have important consequences to Bayes-optimal
inference, where the posterior mean is the minimum mean-squared error (MMSE). This will imply
that, whenever AMP is initialised in the basin of the global minima of the free energy, it will achieve
the information theoretical best performance (in terms of squared error).

5.3 To go further

Both the replica equations and the GAMP algorithm can be readily generalised to multi-index models
of the type:

y ∼ P?(·|W?xi) (5.19)

for W? ∈ Rk×d with k = Θd(1) from a prior PW in Rk×d. In particular, this includes narrow two-layer
neural networks:

fθ(x) =

k∑
j=1

akσ(〈wj ,x〉) (5.20)

where k = Θd(1). These class of models are also known as committee machines in the statistical
physics literature. The storage capacity of committee machines were studied using the replica method
in (Schwarze and Hertz, 1992; Monasson and Zecchina, 1995; Xiong et al., 1997). The Bayes-optimal
replica symmetric formula was derived and rigorously proven by Aubin et al. (2018), who also extended
the GAMP algorithm for this problem.

Bibliographical notes

• The approximate message passing algorithm has its roots in investigation of the so-called Thouless-
Anderson-Palmer (TAP) equations for the Sherrington-Kirkpatrick (SK) model. These are it-
erative equations introduced by Thouless et al. (1977) to compute marginals (a.k.a. local mag-
netisation) of the SK model at high-temperatures. The main feature of these equations is the
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presence of an Onsager term introduced to mitigate self-interactions from a naive mean-field ap-
proximation. Despite having the correct fixed points at high-temperatures, the original schedule
to update the TAP equations was unstable and suffered from convergence issues (Kabashima,
2003a,b). A solution to this problem was given by Bolthausen (2014), who introduced a delayed
update for the Onsager term, similar to the update of ωt in algorithm 1.

• The relationship between the TAP equations and Pearl’s Belief Propagation Pearl (1982) al-
gorithm for Bayesian inference on graphical models was first drawn by Kabashima and Saad
(1998a,b) in the context of error correcting codes. However, it gained in popularity with the
introduction of the survey propagation algorithm for the random K-SAT problem by Mézard
et al. (2002).

• The idea of deriving a message passing scheme for compressive sensing from BP appeared in
Sarvotham et al. (2006). The Gaussian approximation was proposed by (Donoho et al., 2009),
who also coined the name approximate message passing. The analysis of the Bayes-optimal case
was done in Krzakala et al. (2012b,a).

• The state evolution equations were proved by Bayati and Montanari (2011) for the linear case,
and generalised to GLMs by Rangan (2011). The non-separable case was proven by (Berthier
et al., 2020) and extended by Gerbelot and Berthier (2023) to message passing schemes defined
in more general graphs.

• Optimality of AMP among first order methods was proven in (Celentano et al., 2020).

Part III

Lecture 3 — Lessons from simple models

6 Statistical-to-computational gaps

Consider the problem of Bayes-optimal inference for an isotropic generalised linear model, discussed
in example 1. Given D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} independent observations from the model:

yi ∼ P?(·|〈β?,xi〉) (6.1)

with β? ∼ Pβ and xi ∼ N (0p, 1/dId), the goal is to estimate β? under the assumption that P?, Pβ are
known. In this case, the minimum mean-squared error is given by the posterior mean:

θ̂mmse(D) = E[θ|D] (6.2)

where the expectation is over the posterior distribution:

P (θ|D) =
1

Zd(D)

k∏
i=1

Pβ(θk)

n∏
i=1

P?(yi|〈θ,xi〉) (6.3)

where for simplicity we assumed the prior distribution Pβ(β) =
∏
k=1 Pβ(βk) factorises.

6.1 High-dimensional asymptotics

The asymptotic (normalised) mmse is given by:

lim
d→∞

1

d
E [||θmmse(D)− β?||] = ρ−m? (6.4)
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where we used the Nishimori identity eq. (3.7) and defined:

ρ = lim
d→∞

E
[
||β?||22
d

]
, m? = lim

d→∞
E

[
〈θ̂mmse,β?〉

d

]
(6.5)

As discussed in section 4.4, the asymptotic overlap m? is the extremiser of the following problem:

φ(ρ, α) = extr
m,m̂
{−mm̂+ αΦy(m) + Φθ(m)} (6.6)

with:

Φy(m) = Eη
∫

dy Z?(y,
√
qη, ρ−m) logZ?(y,

√
qη, ρ−m) (6.7)

Φθ(m̂) = Eη,β logZβ

(
m̂β +

√
q̂ξ, m̂

)
(6.8)

where η ∼ N (0, 1), ξ ∼ N (0, 1) and:

Z?(y, ω, v) = Ez∼N (ω,v)[P?(y|z)], Zβ(b, A) =

∫
dβPβ(β)e−

1
2
Aβ2+bβ (6.9)

associated with the following self-consistent equations:

m̂t = αEη
∫

dy Z?

(
y,
√
mtη, ρ−mt

)
f?(y,

√
mtη, ρ−mt) (6.10)

mt+1 = Eξ,β
[
fβ

(
m̂tβ +

√
m̂tξ, m̂tβ

)
β
]

(6.11)

where fβ(b, A) = ∂b logZβ, fy(y, ω, v) = ∂ω logZy(y, ω, v) and we the time indices to stress the re-
lationship with the GAMP state evolution. In this case, replica symmetry holds and therefore this
result is exact. Nevertheless, the potential function in eq. (6.6) might not be convex. As we will see
in the following, this will have important algorithmic consequences.

Remark 8. Before moving to the discussion of an example, two remarks:

• Note that when no data is observed α = 0, we have m̂ = 0 and:

m = Eβ[fβ(0, 0)β] = (Eβ[β])2 (6.12)

Therefore, even if we have observed no data we can still have a meaningful overlap with the
signal if the prior has a non-zero mean. This makes sense, since in the Bayes-optimal we have
access to the prior distribution Pβ, which can be informative if its mean is non-zero.

• When running an algorithm such as GAMP, the initial condition θ0 is typically independent of
the signal β?. In the Bayes-optimal setting, the best initialisation which is agnostic to β? but
still leverages the information available is an independent draw from the prior θ0 ∼ Pβ. When
the prior has zero-mean (uninformative), this implies m0 = 0, i.e. zero asymptotic correlation
with the signal. This corresponds to maximal mean-squared error mse = ρ.

6.2 Phase retrieval and the statistical-to-computational gap

In this section we study the phase retrieval problem with Gaussian signal, a particular example that
illustrates a phenomenology shared by most of generalised linear estimation problems. It is defined
by:

Py(y|z) = δ(y − |z|), Pβ = N (0, 1) (6.13)
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In this case, we the effective partition functions eq. (6.9) are given by:

Zβ(b, A) =

∫
dθN (θ|0, 1)e−

1
2
A2θ2+bθ =

e
1
2
b2

1+A

√
1 +A

(6.14)

Zy(y, ω, v) = Ez∼N (ω,v)[δ(y − |z|)] = θ(y) [N (y|ω, v) +N (y,−ω, v)] (6.15)

where θ(t) = max(0, t) is the Heavyside step function. Computing the denoisers, inserting at the
self-consistent eq. (6.10) and doing some massage give us:

qt+1 =
q̂t

1 + q̂t
, q̂t =

α

(1− qt)2
Eξ,η

(√1− qtη +
√
qtξ
)2

tanh

(√
qt

1− qt
ξη +

qt

1− qt
ξ2

)2

− qt


(6.16)

with ξ, η ∼ N (0, 1) independent. Despite being more cumbersome than the Curie-Weiss self-consistent
eq. (2.19), it shares two features with the Curie-Weiss model at zero external field h = 0:

• Since yi = |〈β?,xi〉| is symmetric under β? → −β?, it is information theoretically impossible to
distinguish between the β? and −β? only from the labels yi. This implies that if q? is a solution,
−q? should also be a solution, and without loss of generality we have restricted to q ≥ 0 in
eq. (6.16).

• The (q̂?, q?) = (0, 0) is always a fixed point of eq. (6.16).

The second observation has important computational consequences. As we discussed in remark 8,
an uninformative initialisation will have asymptotic vanishing overlap, meaning that GAMP is ini-
tialised close to the fixed point (m̂,m) = (0, 0). If this fixed point is stable, GAMP will get stuck at
initialisation. Intuitively, we expect this fixed point to become unstable as a certain quantity of data
is observed, since more data means more information about the signal. In other words, we expect
there is a critical sample complexity threshold αc above which (m̂,m) = (0, 0) is unstable, such that
GAMP initialised from a random initial condition will flow away from (m̂,m) = (0, 0) and develop a
non-zero overlap m > 0 with the signal. This transition is known as the computational weak recovery
transition.

4! The weak recovery transition is computational since even if (m̂,m) = (0, 0) is stable, there
could be a lower free energy minima m? > 0 which would correspond to the mmse. Nevertheless,
with high-probability in the dimension d, an uninformed initialisation for GAMP will not land in the
basin of attraction of this minima. As we will see, this is not the case for phase retrieval, for which
(m̂,m) = (0, 0) is the only minima of eq. (6.6) - but this is specific to this problem.

To determine the location of the computational weak recovery transition, we look at the stability
of this fixed point (q̂?, q?) = (0, 0).7 Recall the following result from dynamical systems:

Lemma 1. Consider a discrete dynamical system xt+1 = f(xt) and let x? be a fixed point x? = f(x?)
Then, x? is stable if f ′(x?) < 1 and unstable if f ′(x?) > 1.

To apply this, we consider the expansion of eq. (6.16) to leading order in (q̂?, q?) = (0, 0):

qt+1 = q̂t +O(q2) (6.17)

q̂t = αEξ,η
[
(η4ξ2 − 1)qt +O(q2)

]
= 2qt +O(q2) (6.18)

Therefore, at leading order:

qt+1 = 2αqt +O(q2) (6.19)

7Which is equivalent to looking at the second derivative of the potential Φ.
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Figure 8: (Left) Mean squared error as a function of the sample complexity α = n/d. The solid
curves are obtained from solving the phase retrieval self-consistent equations eq. (6.16) from informed
(m0 ≈ 1) and uninformed m0 ≈ 0 initialisation. Crosses denote finite-size runs of the GAMP algorithm
1 with d = 1000. (Right) Update function q̂t = f(qt) in eq. (6.16) with α = 1.

which implies that (q̂?, q?) = (0, 0) is stable for α < αc = 1/2. This is the weak recovery sample
complexity threshold.

On the opposite side, we can look what happens when a lot of data is available: α → ∞. In this
case, q̂ →∞, which implies q = 1. This corresponds to a perfect alignment with the signal, also known
as the full-recovery fixed point. When it exists, we expect this fixed point to be the global minimum
of the free energy potential since by definition there cannot be better recovery than full recovery of
the signal. For α = 0, this is not a fixed point of the self-consistent equations. Indeed, for this to
be a fixed point we need q̂ to diverge, and since the update function of q̂ is a continuous, increasing
function of qt which only diverges at q = 1 (see fig. 8 (right)), it is not clear for which α this is the
case.

At this point we turn to numerically solving eq. (6.16). As discussed in Section 4.3, this is done
by initialising mt=0 and numerically iterating. Recall that eq. (6.16) is doing gradient descent on
the free energy potential, and therefore when more than one minima is present the iterations will
converge to the minima closest to the initial condition mt=0. There are two initial conditions which
are particularly relevant:

• Uninformed initial condition: This corresponds to a random initialisation, independent
from the signal mt=0 = ε� 1. As discussed above, this would be the typical initialisation of an
algorithm which is agnostic to the data generating process. Note that we need to initialise away
from m = 0 when this is a fixed point, otherwise the iterations won’t move. The exact size of ε
is problem dependent, but heuristically we want it to be small enough such that mt=0 = ε is on
the basin of attraction of 0 when this is a fixed point.

4! Technically, a random vector v ∼ N (0, Id) will have 1/d〈v,β?〉 = O(1/
√
d), so in the high-

dimensional limit this corresponds exactly to mt=0 = 0. But in practice d is always finite,
and mt=0 = ε is a heuristic to mimic the initial O(1/

√
d) correlation with the signal. However,

this heuristic is not rigorous since eq. (6.16) are only valid asymptotically. Proving when this
heuristic is correct is a tour de force and subject research, see e.g. (Rush and Venkataramanan,
2018; Li et al., 2023; Li and Wei, 2024).

• Informed initial condition: This corresponds to an initialisation which is has strong corre-
lation with the signal mt=0 = 1 − ε for ε � 1. Since by definition the Bayes-optimal posterior
mean achieves the mmse, it should correspond to the fixed point with lowest energy and highest
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Figure 9: Illustration of the free energy landscape as a function of the overlap with the ground truth
solution, when one increases α. For small α < αsp, there exists a unique global minimum, whose
overlap with the solution is small (high MSE). At α = αsp, a local minimum (orange dot) with higher
overlap (small MSE) appears. By definition, the global minimum corresponds to the MMSE of the
problem, which is the MSE attained by the Bayes-optimal estimator (green dot). For α < αIT the
accessible solution, i.e the global minimum (green dot) has a high MSE while a better solution exists
but has a higher free energy (weak recovery phase). At α = αIT the two minima are global and
have the same free energy. Between αIT < α < αalg (hard phase), the local minimum with higher
MSE corresponds to the performance of the AMP estimator (red dot). Above αalg only the small
MSE minima survive and the AMP estimator is able to achieve the Bayes-optimal performance (easy
phase).

overlap. This initialisation therefore probes what is the fixed point closest to the perfect recovery
of the signal.

With these in mind, in Figure 8 (left) we show the numerical solution of the self-consistent eq. (6.16)
from both uninformed and informed initialisations, comparing them with a finite-size run of the GAMP
algorithm 1 from a random initial condition. This plot has three important points. From this this

• Computational weak recovery: This is the sample complexity threshold below which α < αc
the uninformed fixed point is stable.

• Information theoretical full recovery: This is the sample complexity threshold α > αit

above which the Bayes-optimal estimator fully aligns with the signal, i.e. the minimum mean-
squared error is exactly zero. In other words, this is the minimum amount of data that needs
to be observed to information theoretically being able to fully reconstruct the signal. From
the self-consistent eq. (6.16) perspective, this is the sample complexity threshold above which
iterating from the informed initialisation mt=0 = 1− ε converges to m = 1 for ε small enough.

• Computational threshold (αamp): This is the sample complexity threshold α > αamp above
which the Bayes-optimal estimator fully aligns with the signal, i.e. the mean square error
achieved by GAMP is exactly zero. In other words, this is the minimum amount of data that
needs to be observed for GAMP to fully reconstruct the signal. From the self-consistent eq. (6.16)
perspective, this is the sample complexity threshold above which iterating from the uninformed
initialisation mt=0 = ε converges to m = 1 for ε small enough. Note that by definition we have
αc < αamp and αit < αamp.

In Figure 8 (left), we have αc = 1/2, αit = 1 and αamp ≈ 1.18. The region α ∈ [αit, αamp] is known as
the hard phase. In this region, it is information theoretically possible to fully reconstruct the signal,
but GAMP fails to do so.

It is useful to have also a mental picture of these thresholds in terms of the free energy potential
Φ(m) = Φ(m, m̂?), which is summarised in fig. 9:

• The spinodal threshold αsp is defined as the threshold below which the free energy potential has
only a single minima. We will denote it by m1,?.

• For α < αc < αsp, this minimum corresponds to zero overlap with the signal m?,1 = 0 and
therefore maximal mmse = 1.
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• The m = 0 minimum turns into a maximum at α = αc, with a m?,1 > 0 minimum developing
nearby. This is the point in which AMP from random initialisation is able to develop small but
non-zero correlation with the signal. Note that for the phase retrieval problem, this is also the
point in which the Bayes-optimal posterior mean is able to develop correlation with the signal.

• At α = αsp, a second minimum m?,2 > m?,1 discontinuously appear, corresponding to higher
overlap but higher energy Φ(m?,2) > Φ(m?,2).

• As α is increased, m?,2 continuously lower in energy. At αit, the two minima cross Φ(m?,1) =
Φ(m?,2), and for α > αit we have Φ(m1,?) < Φ(m?,2). Therefore, up to α < αit, the mmse is
given by mmse = 1 −m?,1, while above α > αit it is given by mmse = 1 −m?,2. In the region
α ∈ [αit, αamp] GAMP initialised from a random initial condition is not sub-optimal, and does
not achieve the mmse. This region is the hard phase. Note that for the phase retrieval problem,
we have m?,2 = 1.

• As α is further increased, the first minimum m1,? (which is now local), continuously rise in
energy, until disappearing at α = αamp. Above α > αamp, m?,2 is the only minimum, and
GAMP initialised from a random initial condition is able to achieve the mmse.

4! The picture above arises in many different random estimation problems. However, some parts
of it are specific to the phase retrieval problem. For instance, in the phase retrieval problem the weak
recovery threshold is both the point in which the mmse and mseamp becomes non-zero. More generally,
αc is a computational threshold, and nothing prevents αc to be above αit - in other words, there are
problems in which the information theoretical transition occurs earlier than the computational weak
recovery transition. This is the case for instance in the sparse subspace clustering problem (Pesce
et al., 2022).

6.3 Weak recovery for general likelihood

The derivation of the computational weak recovery threshold αc for the phase retrieval problem in
Section 6.2 can actually be carried over for generic likelihood. For simplicity, we focus on the Gaussian
prior β ∼ N (0, 1)

Existence of the uninformative fixed point — The first step is to find when (m̂,m) = (0, 0) is
a fixed point. Defining the update functions from eq. (6.10):

Λy(t) = Eη
∫

dy Z?

(
y,
√
tη, ρ− t

)
f?(y,

√
tη, ρ− t), Λθ(t) =

m̂

1 + m̂
(6.20)

Note that m̂ = 0 always imply m̂ = 0. Therefore, it is sufficient to check when m̂ = 0 is a fixed point.
We have:

f?(y, 0, ρ) =
1

ρ

Ez∼N (0,ρ)[zP?(y|z)]
Ez∼N (0,ρ)[P?(y|z)]

(6.21)

(6.22)

Therefore, a sufficient condition for Λθ(0)
!

= 0 is for P?(y|z) to be a symmetric function of z: P?(y| −
z) = P?(y|z). Note both this condition is satisfied for the phase retrieval likelihood.

Stability of the uninformative fixed point — Now, we assume (m̂,m) = (0, 0) is a fixed point.
When is it stable? Lemma 1 says we should look for the Jacobian of (Λθ(t),Λy(t)). Starting by the
Λθ, it is easy to see that:

Λ′θ(0) = 1. (6.23)
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Turning now to Λy:

Λ′y(0) =

∫
dy

E[((z2 − 1)P?(y|
√
ρz))2]

E[P?(y|
√
ρz)]

(6.24)

Therefore, using lemma 1, the computational weak recovery threshold is given by:

1

αc
=

∫
dy

E[((z2 − 1)P?(y|
√
ρz))2]

E[P?(y|
√
ρz)]

(6.25)

6.4 To go further

Optimality of AMP — As we discussed in Section 5.2.2, state evolution shows that GAMP is
effectively performing gradient descent on the same free energy potential than the mmse estimator:
the Bayes-optimal posterior mean. This highly non-trivial fact led to a conjecture that GAMP is the
optimal polynomial time algorithm for a large class of random estimation problems, implying that the
hard phase discussed above is a fundamental computational barrier.

This conjecture was partially proven by Celentano et al. (2020) for the more restrictive compu-
tational class of first order methods, algorithms that only perform matrix multiplication and apply
entry-wise non-linear functions.

However, for general polynomial time algorithms the conjecture is known to be false. For instance,
in the noiseless phase retrieval problem we discussed in section 6.2, Zadik et al. (2022) has shown
that a Lenstra-Lenstra-Lovasz lattice basis reduction method is able to achieve perfect reconstruction
at the information theoretical threshold αit = 1 with complexity O(d6). This algorithm exploits the
specific geometry of the noiseless phase retrieval problem, and is not robust to noise.

Nevertheless, GAMP remains the best polynomial time algorithm which is robust to noise for
most random estimation problems, and it is believed that the computational barriers described in this
lectures do capture some fundamental notion of computational hardness. But this is the subject of
ongoing research. See (Bandeira et al., 2022; Gamarnik, 2021) that go in this direction.

Relationship to the low-degree method — Interestingly, the computational weak recovery
threshold derived in eq. (6.25) coincides exactly with the threshold derived from the low-degree method
lower bound for functions with so-called generative exponent k? = 2 (Damian et al., 2024).

Multi-index model — The computational weak recovery phase transition was studied in the
context of Gaussian multi-index models by Troiani et al. (2024), who provided a full classification
of which subspaces of the target span(W?) are trivial, easy or hard to learn in the proportional
high-dimensional limit.

Multi-layer networks — A multi-layer extension of GAMP was introduced and studied by (Ma-
noel et al., 2017; Gabrié et al., 2018; Aubin et al., 2019, 2020).

Bibliographical notes

For a review of computational-to-statistical gaps in the context of inference problems, see Zdeborová
and Krzakala (2016).

The weak recovery threshold for generalised linear estimation with Gaussian design was derived
by Mondelli and Montanari (2018), both in the real and complex cases. The GAMP full-recovery
threshold was computed by Barbier et al. (2019) for different real channels, including phase retrieval.
The complex case was studied by Maillard et al. (2020), who also generalised this discussion to right-
invariant orthogonal matrices.
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7 Well-specified ridge regression

Let D = {(xi, yi)i ∈ Rd+1 : i ∈ [n]} denote training data. In this section, we consider well-specified
ridge regression under a Gaussian design. This consists of the following problem empirical risk min-
imisation problem:

min
θ∈Rd

1

2

n∑
i=1

(yi − 〈θ,xi〉)2 +
λ

2
||θ||22 (7.1)

under the assumption that the data was generated from a linear model with Gaussian covariates:

yi = 〈β?,xi〉+ zi, xi ∼ N (0d, 1/dΩ), zi ∼ N (0, σ2) (7.2)

This is a particular case of the Gaussian covariate model introduced in Section 3 with u = v (p = d),
squared loss `(y, z) = 1/2(y − z)2 and `2 penalty r(θ) = λ/2||θ||22.

Before looking at the asymptotic solution, note that since this is a quadratic problem it admits a
closed-form solution for the estimator:

θ̂λ(D) =
(
X>X + λId

)−1
X>y (7.3)

where X ∈ Rn×d is the matrix obtained by stacking xi ∈ Rd row-wise and y ∈ Rn is the vector of
labels. Our goal is to get a high-dimensional characterisation of the empirical and population risks:

R(θ̂λ) = E(x,y)

[
(y − 〈θ̂,x〉)2

]
, R̂n(θ̂λ) =

1

n

n∑
i=1

(
yi − 〈θ̂λ,xi〉

)2
(7.4)

In the limit n, d → ∞ with fixed α = n/d. As the exercise below illustrates, this problem naturally
leads to a random matrix theory problem, and could be naturally approached using results from this
field.

Exercise 6. Show that the excess risk:

r(θ̂λ) = EzE(x,y)

[
(y − 〈θ̂λ,x〉)2

]
− σ2 (7.5)

can be decomposed in terms of a bias and variance term:

r(θ̂λ) = B + V (7.6)

with:

B = λ2〈β?,
(
X>X + λId

)−1
Ω
(
X>X + λId

)−1
β?〉 (7.7)

V =
σ2

d
Tr

{
Ω
(
X>X + λId

)−2
X>X

}
(7.8)

Therefore, show that in the classical statistical limit n→∞ at fixed d = O(1), we have:

lim
n→∞

B =
(λ/α)2

d
〈β?,Ω (Ω + λ/αId)

−2 β?〉 (7.9)

lim
n→∞

V =
σ2α

d
Tr
{

Ω2 (Ω + λ/αId)
−2
}

(7.10)

However, to illustrate our results from Section 4 we approach this problem the statistical physics
way.
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7.1 Asymptotic solution

Well-specified ridge regression is perhaps the simplest empirical risk minimisation problem, and in
this case all the integrals in the self-consistent equations eq. (4.91) can be done analytically:

v̂ = α
1+v

q̂ = αρ+σ2+q−2m
(1+v)2

m̂ = α
1+v


v = 1

d Tr Ω(λId + v̂Ω)−1

q = 1
d Tr

(
q̂Ω + m̂2Φβ?β

>
? Φ>

)
Ω(λId + v̂Ω)−2

m = m̂
d Tr Φβ?β

>
? Φ>(λId + v̂Ω)−1

(7.11)

with the asymptotic population and empirical risks given by:

lim
d→∞

ED[R(θ̂λ(D))] = ρ+ q? − 2m? (7.12)

lim
d→∞

ED[R̂n(θ̂λ(D))] = q̂? =
ρ+ q? − 2m?

(1 + v̂?)2
(7.13)

with q?,m?, v? solutions of the self-consistent equations eq. (7.11). Massaging these 6 equations, we
can obtain a compact characterisation of the excess risk in terms of a single equation, see Appendix
Appendix E.1 for the details. Indeed, letting:

ν =
λ

v̂
(7.14)

we can show that the bias and variance decomposition of the excess risk can asymptotically written
as:

B(θ̂λ) ∼
d→∞

B(α, λ) =
αν2

?
1/d〈β?,Ω (ν?Ip + Ω)−2 β?〉

α− 1/dTr Ω2(Ω + ν?Id)−2)
(7.15)

V (θ̂λ) ∼
d→∞

V(α, λ) = σ2
1/dTr Ω2(Ω + ν?Id)

−2

α− 1/dTr Ω2(Ω + ν?Id)−2)
(7.16)

where ν?(α, λ) is the solution of the following self-consistent equation:

αν − λ =
ν

d
Tr Ω (Ω + νId)

−1 . (7.17)

This result agrees with the random matrix theory derivations in the literature, e.g. (Hastie et al.,
2022; Bach, 2024) - see bibliographical note below.

4! Note that in our replica derivation in Section 4, we worked with the unormalised empirical
risk eq. (7.1), which differs from the convention adopted in other works such as (Bach, 2024), where
the risk is normalised. These are related by constant factors of the sample complexity α and scaling
of the regularisation magnitude λ.

Remark 9. The following traces appearing in the asymptotic expressions:

dfa(ν) = Tr Ωa(Ω + λId)
−a, a = 1, 2 (7.18)

are known as degrees-of-freedom, and are classical quantities in the statistical learning analysis of ridge
regression and kernel methods (Zhang, 2005; Caponnetto and De Vito, 2007). They are decreasing
functions of λ, and quantify the effective dimensionality of the matrix Ω, and satisfy:

0 ≤ df2(λ) ≤ df1(λ) ≤ rank(Ωn) (7.19)

with equality on the right at λ = 0+. The interpretation of the asymptotic results eq. (7.15) and
(7.16) in terms of degrees-of-freedom was drawn by Bach (2024).
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Comparing the classical statistical limit of the bias and variance eq. (7.9) and eq. (7.10) with the
proportional asymptotic expression eq. (7.15) and (7.16), we remark that:

• In the proportional asymptotics, we have a self-induced ridge regularisation λ/α→ ν?(α, λ) given
by the solution of the self-consistent equation eq. (7.17). In particular, since λ 7→ ν?(α, λ) is
an increasing function, the self-induced regularisation ν?(α, λ) ≥ λ/α is larger than the original
regularisation (with equality when α→∞).

• We have an additional multiplicative factor in both the bias and variance proportional to:

1

α
≤ 1

α− 1/dTr Ω2(Ω + νId)2
≤ 1

α− 1
(7.20)

In particular, note that this term diverges if:

df2(ν) = Tr Ω2(Ω + ν?Id)
2 = n (7.21)

7.2 Interpolator (λ = 0+)

We now assume that Ω is full-rank8, and consider the ridgeless or least-squares limit λ→ 0+. In this
case, the self-consistent equation reads:

αν =
ν

d
Tr Ω (Ω + νId)

−1 (7.22)

Since Tr Ω(Ω + νIp) ≤ d, for α > 1 (n > d) this equation can only be satisfied by ν?(α) = 0 - i.e. no
self-induced regularisation. Inserting this in eq. (7.15) and (7.16):

B(α) = 0, V(α) =
σ2

α− 1
, α > 1 (7.23)

In the α < 1 regime, eq. (7.22) has a single solution non-zero solution ν?(α) > 0 and such that:

1

d
Tr Ω (Ω + ν?(α)Id)

−1 = α. (7.24)

The exact solution depends on the details of Ω ∈ Rd×d. Note that in this case, since:

0 ≤ df2(ν?(α)) ≤ df1(ν?(α)) = n (7.25)

we will have a divergence of the excess risk only if the two degrees of freedom coincide: df2(ν?(α)) = n.
For example, for an isotropic covariance Ω = Id, we have:

ν?(α) =
1

α
− 1, α > 1 (7.26)

ad therefore the bias and variables are given by:

B(α) =
α2ρ

1− α
, V(α) =

ασ2

1− α
. (7.27)

where ρ = 1/d||β?||22. Therefore, we have a divergence of both the bias and variance at α = 1.

8rank(Ω) = d
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Bibliographical note

There is a vast literature on ridge regression under Gaussian design. On the physics side, one of
the earliest derivations we are aware for the exact asymptotic risk appeared in (Hertz, 1991; Krogh
and Hertz, 1991, 1992), under isotropic covariates and isotropic random signal. This same case was
rigorously studied by (Karoui, 2013; Dicker, 2016), and later generalised to anisotropic covariance
by Dobriban and Wager (2018) and anisotropic random signal by Wu and Xu (2020). The case of
deterministic signal was recently treated in Hastie et al. (2022). Non-asymptotic multiplicative bounds
for the risk were proven by Cheng and Montanari (2022). All the aforementioned results are based on
a RMT treatment of the problem. An analogous result for the isotropic case was proven with Convex
Gaussian min-max theorem (CFMT) in Thrampoulidis et al. (2015).

Part IV

Lecture 4 — Shallow networks

8 The random features model

In this lecture we turn our attention to perhaps the simplest of the neural network models: two-layer
neural networks at initialisation, also known as the random features (RF) model. This consists of
parametric functions of the type:

f(x) =
1
√
p

p∑
j=1

ajσ(〈w0
j ,x〉) (8.1)

where the first-layer weights w0
j are randomly drawn and fixed at their initial value, and the first layer

weights aj are trained via empirical risk minimisation with training data D = {(xi, yi) : i ∈ [n]}:

min
a∈Rp

1

2n

n∑
i=1

(
yi −

1
√
p
〈a, σ(W0,xi〉)

)2

+
λ

2
||a||22. (8.2)

where we have defined the first-layer weight matrix W0 ∈ Rp×d with rows w0,j ∈ Rp and the second
layer vector a ∈ Rp.

The RF model was first introduced by Balcan et al. (2006); Rahimi and Recht (2007, 2008) as
a computationally efficient approximation scheme to kernel methods9. Indeed, assuming the rows of
W0 ∈ Rp×d to be independently drawn w0,j ∼ pw from some distribution, the (random) features map
can be seen as an empirical approximation of a kernel:

K(x,x′) = Ew
[
σ(〈w,x〉)σ(〈w,x′〉)

]
≈ 1

p

p∑
j=1

σ(〈wj ,x〉)σ(〈wj ,x
′〉) (8.3)

The simplest example are translationally-invariant kernel K(x,x′) = κ(||x − x′||2), which can be
explicitly constructed with random Fourier features (Rahimi and Recht, 2007) by choosing pw accord-
ingly. Defining the feature matrix Φ ∈ Rn×p obtained by stacking ϕ(xi) row-wise and the response
vector y ∈ Rn, eq. (8.2) admits an unique closed-form solution given by:

âλ(Φ,y) =
1

n

(
1

n
Φ>Φ + λIp

)−1

Φ>y

=
1

n
Φ>

(
1

n
ΦΦ> + λIn

)−1

y. (8.4)

9Using the kernel trick, a kernel predictor f(x) =
∑n
i=1 ciK(x,xi) involves O(nd) operations, while a RF approxi-

mation f(x) = 〈a, σ(W0x)〉 involves O(p+ d) operations.
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Note the two expressions are related by a simple matrix identity. This is a direct consequence of
the fact the (regularised) empirical risk is a quadratic, strongly convex problem for all λ > 0. In
particular, in the limit λ→ 0+, we have:

â0(Φ,y) = Φ†y (8.5)

where (·)† is the Moore-Penrose pseudo-inverse10. Note this is equivalent to the least-squares predictor
when n ≥ p.

8.1 Setting & Assumptions

Our main working assumption concerning the data distribution are the following:

Assumption 1 (Gaussian covariates). We assume the covariates are i.i.d. Gaussian variables with
zero mean and unit variance, in other words: xi ∼ N (0, 1/dId) independently for all i ∈ [n].

Assumption 2 (Target function). Given the covariates xi ∈ Rd, we assume the responses are given
by:

yi = f?(xi) + εi, (8.6)

with f? ∈ L2(Rd, γd) and ε ∼ N (0, σ2). For simplicity, we will also assume E[f(x)] = 0 so that the
responses are centered E[y] = 0.

As in our previous discussion on high-dimensional asymptotics, in the following we will mostly
focus on a proportional scaling.

Assumption 3 (Proportional asymptotics). We assume p, d, n→∞ at fixed rates α := n/p, γ := p/d.

A few comments about these assumptions are in place:

• The function f? : Rd → R is often refereed as the target function in the learning theory literature
and as teacher function in the Statistical Physics of learning literature. Indeed, the idea of
studying the typical properties of a predictor f ∈ H in learning a random target f? function
dates back to (Gardner and Derrida, 1989) in the Statistical Physics literature, where it is known
as the teacher-student framework.

• Assumption 1 implies that the covariates are isotropic, and therefore the structure in the training
data lies entirely in the target function f?. Of course, real data is structured, with important
directions in the covariates typically correlating with the responses yi. For instance, a simple
principal component analysis (PCA) on MNIST is enough to reveal some information about
the clustered structure of the digits. Therefore, we intuitively expect the results derived under
the Gaussian assumption on the covariates 1 to represent an upper bound on the generalisation
properties of networks trained on real data.

• Note that the assumption on the existence of a target function f? in Assumption 2 is not really
restrictive, since we can always take f? to be the Bayes predictor. The restrictive aspect of
Assumption 2 is to assume that f? ∈ L2(Rd, γd) and the noise is additive Gaussian.

• Note that in practice it is hard to distinguish what is a natural scaling assumption for n, p, d. For
instance, say we want to fit MNIST, a data set with n = 70000 samples of dimension d = 784, do
we have n = Θ(d), n = Θ(d1.5) or n = Θ(d2)? As we will see later, in many different problems
this distinction is not important, as the asymptotic results derived under a tractable scaling are
close to their non-asymptotic counterpart.

10A simple characterisation of the Moore-Penrose pseudo-inverse of retangular matrix A ∈ Rm×n is given in terms its
SVD. Letting A =

∑r
j=1 λjujv

>
j with r = rank(A), we have A† =

∑r
j=1 λ

−1
j vju

>
j ∈ Rn×m.
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8.2 Fundamental limitations in the high-dimensional regime

The ridge operator in eq. (8.4):

y ∈ Rn 7→ 1

n

(
1

n
Φ>Φ + λIp

)−1

Φ>y (8.7)

projects the response onto the column-space of Image(Φ>) ⊂ Rp, which is a linear subspace of the fea-
ture space. To see this mathematically, denote by Φ =

∑r
j=1 λjujv

>
j the singular-value decomposition

of the features Φ with r := rank(Φ) ≤ min(n, p). Then, we can re-write eq. (8.5) as:

âλ(Φ,y) =

r∑
j=1

λj
λ2
j + nλ

〈uj ,y〉vj (8.8)

Therefore, the predictor f(x; âλ) = 〈âλ,ϕ(x)〉 can learn at best a linear component of the target
function f? in the space spanned by the features ϕ(x). For instance, in the vanilla ridge case ϕ(x) = x
this would imply that only a linear component of the target can be learned: f?(x) = 〈β?,x〉+f>1

? (x),
with the non-linear component f>1

? effectively behaving as part of the label noise when projected on
âλ. A non-linear feature map ϕ(x) therefore allows, in principle, to learn higher order, non-linear
components.

To make this discussion more concrete, it is useful to decompose the target function in an or-
thonormal basis with respect to the distribution of the covariates. Since we assume xi ∼ N (0, 1/dId),
this is given by the Hermite polynomials:

f?(x) =
∑
α∈Nd

cαhα(x) (8.9)

where hα(x) are the Hermite tensors, which form an orthonormal basis of L2(Rd, γd). See Appendix A
for a detailed introduction. This basis induces an orthogonal decomposition of L2(Rd, γd) =

⊕
`≥1 Vκ,

where Vκ is the linear space spanned by polynomials of degree ` = |α|. The coefficients cα quantify
how much of the total energy of the target ||f?||2γd =

∑
α c

2
α lies in each subspace.

Assuming the features Φ are full-rank r = min(n, p)11, since the ridge predictor in eq. (8.8) spans
a linear subspace of dimension r, a naive power counting suggests that to learn the component of the
target in subspace V` requires r = O(d`), with the minimum between the number of samples n and
the width p being the bottleneck for approximating V`. Therefore, in a polynomial scaling regime
n, p = Θ(d`), we can learn at best a degree ` polynomial approximation of the target function f?. In
particular, under the proportional asymptotics Assumption 3 which will be our focus in the following,
it is enough to consider a linear target function f?(x) = 〈β?,x〉.
4! It is important to keep in mind the discussion in this section is specific to ridge regression.

8.3 Gaussian universality

An important consequence of the discussion in Section 8.2 is that in the high-dimensional limit a
random features map sees the target function at a limited resolution. This discussion can be made
more quantitative, and is at the heart of the exact asymptotic characterisation of the generalisation
error that will be discussed in Section 8.4. Considering the expansion of the feature map in the Hermite
basis:

ϕj(x) = σ (〈w0,j ,x〉) =
∑
`≥0

b`h`(〈w0,j ,x〉) (8.10)

11For instance, for xi ∼ N (0, 1/dId) and w0,j ∼ N (0, Id), Φ = 1/√pσ(XW>
0 ) will be a full-rank matrix with high-

probability with respect to X,W .
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Its first and second moments are given by:

Ex[σ (〈w0,j ,x〉)] = b0 (8.11)

Ex[σ (〈w0,j ,x〉)σ (〈w0,k,x〉)] =
∑
`≥0

b2`

(
〈w0,j ,w0,k〉

d

)`
(8.12)

In particular, note that if w0,j ∼ N (0, Id), with high-probability 1/d〈w0,j ,w0,k〉 = O(d−1/2) for j 6= k
and 1/d||w0,j ||2 = 1, meaning that to leading order in d, the features population covariance Ω =
Ex[ϕ(x)ϕ(x)>] is given by12:

Ω = b201p1
>
p + b21

W0W
>
0

d
+ b2?Ip + oP,d(1) (8.13)

where we have defined:

b2? =
∑
`≥2

b2` = Ez∼N (0,1)

[
σ(z)2

]
− b20 − b21 (8.14)

This implies that under the proportional high-dimensional limit in Assumption 3, the features ϕ(x) =
σ(W0x) have the same first and second moments as the following Gaussian covariates:

g = b01p + b1W0x+ b?z, z ∼ N (0, Ip) (8.15)

It is not hard to show this equivalence also holds for higher moments. This suggests that in the
proportional high-dimensional limit, we can trade the study of the original non-linear random features
model in eq. (8.2) for the study of an equivalent Gaussian covariate model. This is an instance of a
more general universality phenomenon, known as a Gaussian equivalence.

Definition 1 (Gaussian equivalence principle). Let D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} denote training
data generated as follows:

yi = f?(xi) + εi, xi ∼ N (0, 1/dId) independently (8.16)

And consider the following empirical risk minimisation problem:

âλ(y,Φ) = argmin
a∈Rp

1

n

n∑
i=1

` (yi, 〈a,ϕ(xi)〉) + λr(a). (8.17)

where ϕ : Rd → Rp is a feature map, ` and r convex loss and regularisation functions, respectively.
Define the equivalent Gaussian covariate model:

gi ∼ N (µ,Ω), with µ = Ex[ϕ(x)], Ω = Covx(ϕ(x)) (8.18)

Then, we say a Gaussian equivalence principle (GEP) holds if under a high-dimensional asymptotics
d→∞ the following hold:

EX |R(âλ(Φ,y))−R(âλ(G,y))| → 0 (8.19)

EX |R̂(âλ(Φ,y);D)− R̂(âλ(G,y);D)| → 0 (8.20)

A few remarks about in place.

12Note this is normalised such that Tr Ω = Θ(p)
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• As the name suggests, we view Gaussian equivalence as a principle rather than a theorem.
The reason is that different Gaussian equivalence results holding for different hypotheses, loss
functions, regularisations and scaling limits co-exist in the literature. Each has its particular
assumptions and rather than discussing a problem-specific theorem, we take the broader view-
point of Gaussian universality as a principle.

• Note that the GEP stated above goes beyond the equivalence of the population covariances
discussed above. Indeed, the equivalence on the level of the errors is stronger than equivalence
on the level of the population covariance. In particular, for ridge regression this also requires an
equivalence on the level of the resolvent of the empirical covariance matrix.

• Note that the GEP implies that the empirical feature matrix decomposes in two pieces:

Φ = b01n1
>
p + b1XW

>
0 + b?Z (8.21)

The first term is a just a rank-one spike due to the mean of the features. Assuming n, p ≥ d, the
second term consists of a rank d matrix, and comes from the low-frequency components of the
feature map. Finally, the last term is a random Gaussian matrix of rank min(n, p) and variance
given by the remaining, high-frequency components of the feature map. Note this decomposition
generalises to a polynomial scaling n, d = Θ(d`), see Section 4.4 in (Misiakiewicz and Montanari,
2023) for a discussion.

8.4 High-dimensional asymptotics

To simplify the discussion, in this section we will make the following additional assumptions on the
top of Assumption 1 and 2:

Assumption 4. Assume that:

• The activation function σ has zero mean b0 = 0. Note this holds for odd activation functions
such as tanh.

• The target coefficients are i.i.d. Gaussian β? ∼ N (0d, Id).

The discussion in Section 8.2 and 8.3 suggests that in the proportional limit, the random features
ridge regression defined in eq. (8.2) is equivalent to ridge regression on the following Gaussian covariate
model:

min
a∈Rp

1

2n

n∑
i=1

(〈β?,xi〉+ εi − 〈a, gi〉)2 +
λ

2
||a||22. (8.22)

where (x, g) ∈ Rd+p are jointly Gaussian vectors:

(x, g) ∼ N
(

0d+p,

[
1/dId 1/

√
dpΦ>

1/
√
dpΦ 1/pΩ

])
(8.23)

with covariances given by:

Φ = b0W0 ∈ Rp×d, Ω = b21
W0W

>
0

d
+ b2?Ip ∈ Rp×p (8.24)

This is a particular case of the model introduced in Section 3! Therefore, we can readily apply the
equations we have derived for the Gaussian covariate model to derive the asymptotic excess risk for
the random features model. This is given by:
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Figure 10: Test error of the random features ridge regressor as function the the number of the nor-
malised width p/n at fixed n/d = 1.5 and λ = 0+. The solid line denote the theoretical result obtained
from iterating the self-consistent eq. (8.29), and points denote finite-size simulations with d = 500.

Result 1 (Asymptotic error for RFRR). Consider the random features ridge regression problem in
eq. (8.22) under Gaussian design (1). Then, under Assumption 4, the asymptotic excess risk in the
limit n, p, d→∞ at fixed rates α = n/d and γ = p/d is given by:

lim
d→∞

R(âλ)− σ2 = B(α, γ, λ) + V(α, γ, λ) (8.25)

where the limiting bias B and variance V are given by:

B(α, γ, λ) =
n/dTr

{(
b2? + ν(ν + b2?)R(ν + b2?; b

2
1/dW>

0 W0)
)
R(ν + b2?; b

2
1/dW>

0 W0)
}

n− df2(ν + b2?; b
2
1/dW0W>

0 )

V(α, γ, λ) = σ2 df2(ν + b2?; b
2
1/dW0W

>
0 )

n− df2(ν + b2?; b
2
1/dW0W>

0 )
(8.26)

where R is the resolvent matrix:

R(ν;A) = (ν +A)−1 (8.27)

dfα are the degrees of freedom, also known as effective dimensions:

dfα(ν;A) = TrAα(ν +A)−α, α ∈ {1, 2} (8.28)

and ν is the solution of the following self-consistent equation:

n− pλ

ν
= df1(ν + b2?; b

2
1/dW0W

>
0 ) (8.29)

See appendix E.3 for the derivation from the GCM. This result allow us to fully characterise the
risk as a function of the random features activation function σ (which define b1, b?) and the first-layer
weights W0 ∈ Rp×d. In particular, if 1/dW0W

>
0 admits an asymptotic spectral distribution µ, all

the traces above can be written as one-dimensional integrals with respect to µ. Figure 10 illustrates
the test error of the random features interpolator as a function of the number of the network width,
obtained from eq. (8.26). For p/n < 1, we observe the U-shapped curved from the classical bias-variance
tradeoff. Note the interpolating peak at n = p. Differently from the well-specified ridge regression
case discussed in section 7, the error keeps decreasing beyond the interpolation point p/n > 1. This is
known as the double descent behaviour (Belkin et al., 2019).
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8.5 To go further

Beyond proportional regime — A GEP for the spectrum of kernel matrices in the power-law
scaling was proven in (Dubova et al., 2023; Lu and Yau, 2022). Similarly, universality results for
the performance of kernel ridge regression in the polynomial scaling appeared (Canatar et al., 2021;
Xiao et al., 2023; Misiakiewicz and Saeed, 2024), for support vector machines in Opper and Urbanczik
(2001); Dietrich et al. (1999) and for random features ridge regression in (Hu et al., 2024; Aguirre-
López et al., 2024)

Deep random features — Fan and Wang (2020) provided a characterisation of the resolvent of
deep random feature maps with i.i.d. Gaussian weights in the proportional regime. A GEP for the
error was proven by (Schröder et al., 2023; Bosch et al., 2023a), and extended to correlated weights
by Schröder et al. (2024).

Mixture distributions — Refinetti et al. (2021) derived a GEP for random features on Gaussian
mixture distribution. Dandi et al. (2024) proved a GEP for mixture models.

Limitations of universality — Finally, several authors have discussed the limitations of GEP in
different contexts, see (Gerace et al., 2024; Pesce et al., 2023; Tomasini et al., 2022; Cheng et al., 2024)

Bibliographical notes

• Universality is a rich topic that crosses different disciplines, such as Statistical Physics (Marinari
et al., 1994; Parisi and Potters, 1995; Parisi and Rizzo, 2010; Franz et al., 2017), Random
Matrix Theory (Johansson, 2001; Ben Arous and Péché, 2005; Tao and Vu, 2011; Erdős et al.,
2012), Signal Processing (Donoho and Tanner, 2009; Korada and Montanari, 2011) and Statistics
(Panahi and Hassibi, 2017; Montanari and Nguyen, 2017; Abbasi et al., 2019).

• A precursor of Gaussian equivalence for the random features model is (Karoui, 2010), who showed
that in the proportional asymptotics the spectrum of a random kernel matrix is equivalent to
the spectrum of a shifted linear kernel. Other hints also appeared in (Pennington and Worah,
2017; Louart et al., 2018), where the resolvent of the empirical random features covariance was
characterised, also under the proportional limit.

• The GEP for the RF model, as formulated in Definition 1, appeared around the same time in
(Mei and Montanari, 2022; Goldt et al., 2020). Mei and Montanari (2022) provided a rigorous
random matrix proof for random features ridge regression in the proportional asymptotics. This
discussion was generalised by Gerace et al. (2020) to general convex loss functions. A central
limit for one-dimensional projections of RF was proven in (Goldt et al., 2022; Hu and Lu, 2022).
Hu and Lu (2022) combined this result with a Lindeberg argument to establish the universality
of the test and training errors under general convex losses. This was extended to general convex
regularisers by Bosch et al. (2023b). A GEP for general feature maps was formulated by Loureiro
et al. (2021), who also studied its validity in real data. Montanari and Saeed (2022) proposed a
refined interpolation scheme and proved universality for sub-Gaussian and NTK features.

45



Appendix

A Basics of Hermite polynomials

A.1 Scalar Hermite polynomials

Let γ : R→ R denote the standard normal probability density function (pdf):

γ(z) =
1√
2π
e−

1
2
z2 (A.1)

We denote by L2(R, γ) the space of functions which are square-integrable with respect to γ:

L2(R, γ) :=

{
f : R→ R : EZ∼γ

[
|f(Z)|2

]
=

∫
R
γ(dz)|f(z)|2 <∞

}
(A.2)

Note that this coincides with the space of real functions which have finite-second moment with respect
to the Gaussian distribution. Recall that L2(R, γ) defines a separable13 Hilbert space with inner-
product given by:

〈f, g〉γ = EZ∼γ [f(Z)g(Z)] =

∫
R
γ(dz)f(z)g(z) (A.3)

As a separable Hilbert space, L2(R, γ) admits a countable basis. There are many possible choices
of bases, and the motivation behind the construction of Hermite polynomials is precisely to build
a “convenient” basis for L2(R, γ), given by polynomials which are orthogonal with respect to the
inner-product 〈·, ·〉γ .

Definition 2 (Hermite polynomials). The Hermite polynomials Hej(z), j ≥ 0 are a real-valued family
of polynomials defined by:

Hej(z) :=
(−1)j

γ(z)

dj

dzj
γ(z). (A.4)

Moreover, the family (Hej)j≥0 satisfy the following useful properties:

(a) Degree: Hej(z) is a polynomial of degree j.

(b) Orthogonality: For any j, k ≥ 0, we have:

〈Hej ,Hek〉γ = EZ∼γ [Hej(Z)Hek(Z)] = j!δjk (A.5)

(c) Correlations: Let Z,Z ′ ∼ N (0, 1) with E[ZZ ′] = ρ ∈ [−1, 1]. Then:

E[Hej(Z)Hek(Z
′)] = j!δjkρ

j (A.6)

(d) Derivatives:

d

dz
Hej(z) = jHej−1(z) (A.7)

(e) Completeness: Any f ∈ L2(R, γ) can be decomposed as a sum of Hermite polynomials:

f(z) =
∑
j≥0

f̂j
j!

Hej(z), f̂j := 〈f,Hej〉γ (A.8)

13A separable Hilbert space is a Hilbert space that has a countable basis.
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The Hermite polynomials can be constructed explicitly from the monomials (zj)j≥0 by Gram-

Schmidt orthogonalisation, see Section 11.2 of O’Donnell (2014) for a detailed discussion.4! Different
conventions for the Hermite polynomials co-exist in the literature. The one we adopt in Definition 2,
which is the most commonly employed in the machine learning literature, is known as the probabilist ’s
Hermite polynomial, in contrast to the physicist ’s Hermite polynomials commonly found in the Physics
literature.

Note that (Hej)j≥0 are not normalised. Indeed, as a particular case of property (b) we have:

||Hej ||2γ = EZ∼γ [|Hej(Z)|2] = j!

It is therefore convenient to define the normalised Hermite polynomials (hj)j≥0:

hj(z) :=
Hej(z)√

j!
(A.9)

such that 〈hj , hk〉γ = δjk.

4! Note that the decomposition of f ∈ L2(R, γ) in the orthonormal basis (hj)j≥0 reads f(z) =∑
j≥0 µjhj(z). It is important to keep in mind that f̂j = 〈f,Hej〉γ =

√
j! 〈f, hj〉γ . This is often a

source of confusion. From the completeness relation in eq. (A.8), it is easy to show that:

Lemma 2 (Plancharel Formula). Let f, g ∈ L2(R, γ). Then:

〈f, g〉γ =

d∑
j=1

f̂j ĝj (A.10)

A.2 Multi-variate Hermite polynomials

The discussion above can be generalised to higher dimensions. Let γd denote the multi-variate Gaussian
pdf:

γd(z) =
1

(2π)d/2
e−

1
2
‖z‖22 (A.11)

And as before define:

L2(Rd, γd) :=

{
f : Rd → R : EZ∼γd

[
|f(Z)|2

]
=

∫
Rd
γd(dz)|f(z)|2 <∞

}
(A.12)

The straightforward construction of an orthonormal polynomial basis for L2(Rd, γd) is given by taking
products of (normalised) Hermite polynomials hj . For instance, for any multi-index α ∈ Nd, we can
define:

hα(z) =
d∏
i=1

hαi(zi) (A.13)

It is easy to see that (hα(z))α∈Nd is an orthonormal family, i.e. for any α,β ∈ Nd:

〈hα, hβ〉γd = EZ∼γd [hα(Z)hβ(Z)]
(a)
=

d∏
j=1

EZj∼γ [hαj (Zj)hβj (Zj)] =
d∏
j=1

δαjβj (A.14)

where in (a) we used the fact that Zj ∼ γ are i.i.d. to bring the product outside the expectation.
Therefore, the family (hα(z))α∈Nd form an orthonormal basis of L2(Rd, γd), i.e. any f ∈ L2(Rd, γd)
can be written as:

f(z) =
∑
α∈Nd

f̂αhα(z), f̂α := 〈f, hα〉γd (A.15)
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Example 4. As a concrete illustration, let’s look at d = 2. Letting α = (α1, α2) ∈ N2, we have the
expansion of f ∈ L2(R2, γ2):

f(z1, z2) =
∑

(α1,α2)∈N2

f̂α1,α2hα1,α2(z1, z2) =
∑
α1≥0

∑
α2≥0

f̂α1α2hα1(z1)hα2(z2)

= f̂00 +
∑
α1≥1

f̂α10hα1(z1) +
∑
α2≥1

f̂0α2hα2(z2) +
∑
α1≥1

∑
α2≥1

f̂α1α2hα1(z1)hα2hα2(z2)

= f̂00 + f̂01z1 + f̂10z2 + f̂11z1z2 + f̂20
z2

1 − 1√
2

+ f̂02
z2

2 − 1√
2

+ · · ·

The definition in eq. (A.13) is not the unique way to lift hj into an orthonormal basis of L2(Rd, γd).
Indeed, there are as many ways of constructing this extension as there are bases of Rd. To see this,
let (ui)i∈[d] denote an orthonormal basis of Rd. By construction, the matrix U ∈ Rd×d obtained by

concatenating (uj)i∈[d] row-wise defines an orthogonal matrix U>U = Id, and for any z ∈ Rd we can
write:

z =

d∑
i=1

〈ui, z〉ui. (A.16)

With this in mind, we can define a general lifting of (hj)j≥0:

Definition 3 (Multi-variate Hermite polynomials). Let U ∈ O(d) denote an orthogonal matrix. For a
multi-index α ∈ Nd, we define the (normalised) multi-variate Hermite polynomial hα(U) ∈ L2(Rd, γd)
with respect to U as:

hα(U)(z) =
d∏
i=1

hαi (〈ui, z〉) (A.17)

It satisfies the following useful properties:

(a) Degree: hα(U)(z) is a polynomial of degree |α| =
∑d

i=1 αi.

(b) Orthogonality: For any α,β ∈ Nd, we have:

〈hα(U), hβ(U)〉γd = δαβ :=
d∏
i=1

δαiβj (A.18)

(c) Completness: Any f ∈ L2(Rd, γ) can be decomposed :

f(z) =
∑
α∈Nd

f̂jhα(U)(z), f̂α := 〈f, hα(U)〉γd (A.19)

It is easy to see that when U = Id, i.e. ui = ei is the canonical basis, this definition reduces to
eq. (A.13).

B Useful Matrix identities

Let U ∈ Rn×d and V ∈ Rd×n be two retangular matrices. We have the following useful identities:
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• The traces of the resolvent and co-resolvent are related as:

Tr(UV − zIn)−1 = Tr(V U − zId)−1 − n− d
z

(B.1)

Taking the derivative with respect to z on both sides, this also implies:

Tr(UV − zIn)−2 = Tr(V U − zId)−2 − n− d
z2

(B.2)

• Push-through identity:

(UV − zIn)−1U = U(V U − zId)−1 (B.3)

• Block inversion formula:[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(B.4)

where An×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m.

C Random Matrix Theory

In this Appendix, we recall some useful notions and results from random matrix theory. We start by
defining the following useful notions:

Definition 4 (Resolvent). Let A ∈ Rn×n denote a symmetric matrix with eigenvalues spec(A) =
{λ1, . . . , λn}. The resolvent of A is defined as:

R(z;A) = (A− zIn)−1 ∈ Rn×n, z ∈ C− spec(A). (C.1)

Definition 5 (Empirical spectral measure). Let A ∈ Rn×n denote a symmetric matrix with eigenval-
ues spec(A) = {λ1, . . . , λn}. We define its empirical measure:

µ̂n(λ;A) =
1

n

n∑
i=1

δ(λ− λi) (C.2)

Note this is the normalised counting measure of spec(A). Moreover, note that by construction it is
normalised

∫
R µ̂n(dλ) = 1, hence it is a probability measure.

Definition 6 (Stieltjes transform). Let µ denote a finite real measure with support supp(µ) ⊂ R. We
define its Stieltjes transform:

s(z;µ) =

∫
R

µ(dt)

t− z
, z ∈ C− supp(µ). (C.3)

Note that if µ = µ̂n(·;A) is the empirical spectral measure associated to a real symmetric matrix
A ∈ Rn×n, we will some times denote s(z; µ̂n) = sn(z;A) and refer to ŝn as the “Stieltjes transform
of the matrix A”, which can also be written as:

sn(z;A) =
1

n
TrR(z;A) =

1

n
Tr (A− zIn)−1 , z ∈ C− spec(A), (C.4)

where R(z;A) is the resolvent of A. The Stieltjes transform satisfy the following useful properties:
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•

|s(z;µ)| ≤ 1

dist(z, supp(µ))
(C.5)

In particular, if supp(µ) is bounded, then:

lim
x→±∞

s(x;µ) = 0 (C.6)

•

Im(z) Im(s(z;µ)) ≥ 0 (C.7)

• The restriction of s(z;µ) to the real axis R−supp(µ) is an increasing function in all the connected
components of supp(µ).

• If µ admits a density f at x:

f(x) =
1

π
lim
ε→0+

Im[s(x+ iε;µ)] (C.8)

Definition 7 (Degrees-of-freedom). Let A ∈ Rn×n denote a real symmetric matrix with spec(A) =
{λ1, . . . , λn}. We define the degrees-of-freedom:

dfα(λ;A) = Tr{Aα(A+ λIn)−α} =
n∑
i=1

(
λi

λi + λ

)α
, α ∈ {1, 2} (C.9)

The degrees-of-freedom dfα(λ;A) provide a notion of an effective dimension for the matrix A, as
justified by the following properties:

• dfα(λ;A) are strictly decreasing functions of λ with dfα(0;A) = n.

• The following bound hold:

0 ≤ df2(λ;A) ≤ df1(λ;A) ≤ n (C.10)

• dfα can be related to the restriction of the Stieltjes transform sn(z;A) = 1/nTr(A− zIn)−1 on
the negative real axis z = −λ ∈ R+ − spec(A) as follows:

1

p
df1(λ;A) = 1− λsn(−λ) (C.11)

(C.12)

Definition 8 (Deterministic equivalent). Let M ∈ Rn×n denote a symmetric random matrix. We say
M̄ ∈ Rn×n is a deterministic equivalent for M if for sequences of deterministic matrices A ∈ Rn×n
with ||A||op = 1 and unit vectors u,v ∈ Sn−1 we have:

1

n
TrA(M − M̄)→ 0, u>(M − M̄)v → 0, (C.13)

as n→∞, where convergence can be almost surely or in probability. Often, we will denote M ∼ M̄
to say that M̄ is a deterministic equivalent for the random matrix M .
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C.1 Wishart matrices

We now review some classical RMT results for Wishart matrices.

Theorem 2 (Silverstein and Bai (1995)). Let Σ denote a symmetric positive semi-definite matrix
with bounded operator norm, and define X = ZΣ1/2 ∈ Rn×d with Z ∈ Rn×d a matrix with i.i.d.
sub-Gaussian entries with zero mean and unit variance. In the proportional asymptotic limit where
n, d→∞ at fixed ratio c = d/n, the following deterministic equivalents hold:(

1/nX>X − zId
)−1
∼ −1

z
(Id + s̃d(z)Σ)−1 (C.14)(

1/nXX> − zIn
)−1
∼ s̃d(z)In (C.15)

where (z, s̃d(z)) are the unique solution of the following self-consistent equation:

1

s̃d
+ z =

1

n
Tr Σ(Id + s̃dΣ)−1 (C.16)

In particular, if Σ admits an asymptotic spectral measure ν as d→∞, then:

µ̂d(·; 1/nX>X)→ µ, µ̂n(·; 1/nXX>)→ µ̃ (C.17)

with associated Stieltjes transform s(z) = s(z;µ) and s̃ = s(z; s̃) satisfying:

s(z) =
1

c
s̃(z) +

1− c
cz

,
1

s̃(z)
+ z = c

∫
ν(dt)

t

1 + ts̃(z)
(C.18)

Remark 10. In machine learning, we will often be interested in the asymptotic equivalent of quantities

of the type Tr
(
Σ̂n + λId

)−1
and Tr Σ̂n(Σ̂n+λId)

−1, where λ ≥ 0 and Σ̂n := 1/nX>X is the empirical

covariance matrix. We can translate the result from Equation (C.16) to this case:

Tr Σ̂n(Σ̂n + λId)
−1 ∼ Tr Σ(Σ + κ(λ)Id)

−1 (C.19)

where we have evaluated eq. (C.16) at z = −λ and defined:

κ(λ) =
1

s̃(−λ)
. (C.20)

Therefore, κ : R+ → R+ is an increasing function satisfying the following self-consistent equation:

1− λ

κ
=

1

n
Tr Σ(Σ + κId)

−1 =
1

n
df1(κ; Σ) (C.21)

Corollary 1 (Other equivalents). Other useful deterministic equivalents can be obtained from The-
orem 2 by differentiation, see Bach (2024) for a derivation. Here, we list two that will be used later.

•

Tr Σ̂n(Σ̂n − zId)−2 ∼
nTr Σ

(
Σ + 1

s̃d(z)Id

)−2

n− Tr Σ2
(
Σ + 1

s̃d(z)Id

)−2 (C.22)

•

Tr Σ̂2
n(Σ̂n − zId)−2 ∼ Tr Σ2

(
Σ +

1

s̃d(z)
Id

)−2

+
1

s̃d(z)2

(
Tr Σ

(
Σ + 1

s̃d(z)Id

)−2
)2

n− Tr Σ2
(
Σ + 1

s̃d(z)Id

)−2 (C.23)

Tr
(
Σ̂n − zId

)−2
∼ 1

z

nTr Σ
(
Σ + 1

s̃d(z)Id

)−2

n− Tr Σ2
(
Σ + 1

s̃d(z)Id

)−2 +
1

z2s̃d(z)
Tr

(
Σ +

1

s̃(z)
Id

)−1

(C.24)

51



Corollary 2 (Isotropic Wishart). In the isotropic case Σ = Id, we have ν = δ1 and eq. (C.18)
simplifies to:

1

s̃
+ z =

c

1 + s̃
(C.25)

which admits two explicit solutions, depending on the branch of the complex square-root function:

s̃±(z) =
c− 1− z ±

√
(1− c+ z)2 − 4z

2z
(C.26)

However, only s̃+ satisfies the property Im(z) Im(s̃) ≥ 0 in eq. (C.7). Thefore, we have the following
asymptotic Stieltjes transforms for the isotropic Wishart matrices:

s(z; 1/nX>X) =
1− c− z +

√
(1− c+ z)2 − 4z

2cz
(C.27)

s̃(z; 1/nXX>) =
c− 1− z +

√
(1− c+ z)2 − 4z

2z
(C.28)

Using the Stieltjes inversion formula in eq. (C.8), we can also obtain explicit expressions for the
asymptotic spectral distribution:

µ(x) =

(
1− 1

c

)
+

δ(0) +

√
(c+ − x)(x− c−)

2πcx
I[c−,c+](x) (C.29)

(C.30)

where c± = (1 ±
√
c)2. Note that since X>X has the same non-zero eigenvalues as XX>, the only

difference between µ and µ̃ is on the number of zero eigenvalues:

µ(x; 1/nXX>) = µ(x; 1/nX>X) + (1− c)δ(x). (C.31)

Finally, note that in the isotropic case we have:

df1(λ; Id) =
d

1 + λ
(C.32)

and therefore:

κ(λ) =
1

s̃(−λ)
=

1

2

(
λ+ c− 1 +

√
(1− c− λ)2 + 4λ

)
(C.33)

In particular, we also have:

df1(λ; Σ̂) ∼ df1(κ(λ); Id) =
2

1 + c+ λ+
√

(1− c− λ)2 + 4λ
(C.34)

Finally, note we can use eq. (C.23) to get:

df2(λ; Σ̂) ∼ df2(κ(λ); Id) +
d2

(1 + κ(λ))4

κ(λ)2

n− df2(κ(λ); Id)
(C.35)

=
d

(1 + κ)2

(
1 +

cκ(λ)2

(1 + κ(λ))2 − c

)
(C.36)
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D Generalised approximate message passing

D.1 Derivation from Belief Propagation

In this appendix we discuss the derivation of the Generalised Approximate Message Passing (GAMP)
algorithm from belief propagation. Our derivation closely follow the ones appearing in (Zdeborová
and Krzakala, 2016). To simplify the exposition, we restrict the derivation to the following particular
case of the model discussed in Section 3:

• Separable prior distribution:

ϕ(θ) =

p∏
k=1

ϕ(θk). (D.1)

For a discussion of the non-separable case, we refer the reader to Berthier et al. (2020); Gerbelot
and Berthier (2023).

• Isotropic covariates:

vi → xi ∼ N (0p, 1/pIp), i.i.d. (D.2)

For notational convenience, we switch from vi → xi. This is to avoid confusion with the letter V
which is commonly used for the pre-activation variance in AMP. The non-isotropic case follows
from the isotropic one by adapting the prior denoising function, see Clarté et al. (2023) for a
discussion.

Under these simplifications, the posterior measure for generalised linear estimation reads:

P (θ|X,y) =
1

Zd(X,y)

n∏
i=1

ψ(yi|〈θ,xi〉)
p∏

k=1

ϕ(θk) (D.3)

where X ∈ Rn×p is the matrix with rows xi ∈ Rp and y ∈ Rn the vector with entries yi.

4! Recall that ϕ and ψ are not required to be probability densities, just positive functions.

Factor graph — For the derivation, it will be convenient to represent the posterior distribution
eq. (D.3) in a factor graph. This is a bi-partite graph with two types of nodes: variable nodes (©)
and factor (�) nodes. Every variable node represent a random variable in the problem. For the
posterior distribution eq. (D.3), the variable nodes are θk, which we will always index with indices
k, l,m ∈ [k]. Factor nodes represent non-negative functions of these random variables, and for the
posterior distribution we have the prior ϕ(θk) and the likelihood ψ(yi|〈vi,θ〉). We will always denote
factor nodes with indices i, j ∈ [n]. Edges are placed between variables and factors whenever they
are functionally dependent. Edges can only connect variables to factors, never factors to factors or
variables to variables. We adopt the notation from graph theory, and the set of edges by E, and
∂i = {k ∈ [p] : (ik) ∈ E}, ∂k = {i ∈ [n] : (ik) ∈ E}.

The factor graph for the posterior eq. (D.3) is shown in fig. 11. Note that every prior factor connect
to a single variable, while likelihood factors connect to all variables - in physics jargon, we say the
model is fully-connected.

D.1.1 Belief Propagation

Belief propagation, also known as the sum-product message passing algorithm is an algorithm intro-
duced by Pearl (1982) for performing Bayesian inference in graphical models. Its goal is to estimate the
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Figure 11: Factor graph for generalised linear estimation

marginals of probability distributions defined on graphs through an iterative message passing scheme.
For the generalised linear estimation posterior eq. (D.3), the marginals are given by:

P (θk|X,y) ∝
∫ ∏

l 6=k
dθP (θ|X,y) = ϕ(θk)

∫ ∏
l 6=k

dθlϕ(θl)

 ∏
i∈[n]

ψ(yi|〈θ,xi〉) (D.4)

And BP seeks to estimate it by the procedure given in Algorithm 2.

Remark 11. A few remarks are in order.

• BP is composed of two types of messages: the variable-to-factor mk→i and factor-to-variable
m̂i→k beliefs. Factor-to-variable messages mi→k(θk) express the current belief of the factor i over
variable k state. It aggregates all the variable-to-factor messages ml→i(θl) from the neighbouring
variables excluding k (l ∈ ∂i\k = [p]\k) and marginalise over them. Variable-to-factor messages
mi→k the beliefs of all factors in the neighbourhood of k except i - and therefore express the
belief about variable k state when factor i is excluded.

• At every step, the algorithm requires going through all the factors and nodes of the factor graph.
This requires TODO: number of operations per step. Different scheduling methods on what
order to update the messages are possible.

• Note that an implicit assumption in BP is that the beliefs mk→i are statistically independent.
This is true for instance when the factor graph is a tree. Indeed, on tree-like14 factor graphs,
BP provably converges to the true marginals eq. (D.4) in a single forward-backward pass with
an optimal scheduling. Although the factor graph of fully-connected models such as the GLM
fig. 11 are not trees, as we will see later BP can still be exact. Indeed, this will be the case for
mean-field models where the interaction between variables are O(1/d), and therefore although
present loops are subleading at large d.

4! Under the BP assumptions, θk ∼ mk→i and θl ∼ ml→i are independent random variables for
l 6= k. This should not be confused with the components θk of posterior samples θ ∼ P (θ|D), which
are not independent.

14Tree-like graphs are graphs for which the smallest loops are of size O(log d), and therefore they locally look like trees.
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Algorithm 2: BP

Input: Data V ∈ Rn×p, y ∈ Rn, likelihood ψ, prior ϕ.
for t ≤ T do

For every node k ∈ [d] and factor i ∈ [n]:

mt+1
k→i(θk) =

ϕ(θk)
∏
j 6=i m̂

t
j→k(θk)∫

R dθϕ(θ)
∏
j 6=i m̂

t
j→k(θ)

; /* Update variable-to-factor belief */

m̂t
i→k(θk) =

∫
R(
∏
l 6=k dθlm

t
l→i(θl))ψ(yi|〈xi,θ〉)∫

dθ
∏
l 6=km

t
l→i(θl)ψ(yi|〈xi,θ〉)

; /* Update factor-to-variable belief*/

end for

Return: Marginals mk(θk) =
∏
i∈[n] m̂

T
i→k(θk)∫

dθ
∏
i∈[n] m̂

T
i→k(θ)

D.1.2 Reduced Belief Propagation

When the posterior is a discrete probability distribution over a vocabulary V , the BP messages
(mi→k, m̂k→i) will be vectors of dimension |V |. However, when the posterior is a continuous probabil-
ity density, as in the GLM case eq. (D.3), the messages are themselves probability densities. Therefore,
running BP in practice for continuous probability densities requires binning the distribution, intro-
ducing new hyperparameters to tune and numerical errors.

In this case, it is common practice to assume the messages belong to a class of parametric proba-
bility density and reduce BP to an iterative algorithm on the parameters of this density. The simplest
case is Gaussian Belief Propagation, in which case we assume the messages take the shape of a Gaus-
sian density, see for example (Shental et al., 2008). In general, an ansatz introduces an inductive bias
on the algorithm which will be reflected on the shape of the final BP marginals. This is a consequence
of the fact that the model is fully-connected and with weakly interacting edges, implying that the
distribution of the pre-activations is asymptotically Gaussian thanks to the central limit theorem.
Gaussianity of the pre-activations will imply the posterior marginals take a particularly simple shape
of a Gaussian convolution with the prior and likelihoods.

To see this, we start by looking on the factor-to-variable beliefs:

m̂t
i→k(θk) ∝

∫
R

∏
l 6=k

dθlm
t
l→i(θl)

ψ(yi|〈xi,θ〉) (D.5)

Our goal is to understand how this distribution looks like for the GLM posterior. This expression
takes the form of an expectation over θl ∼ ml→i, which by assumption are independent conditionally
on θk.

The first step is to study the distribution of the pre-activations z = Xθ ∈ Rn (a.k.a. local-fields
in the physics jargon). Note we can decompose it as:

zi =

p∑
l=1

Xilθl =
∑
l 6=k

Xilθl +Xikθk (D.6)

This expression takes the form of an expectation over the variable-to-factor belief ml→i for l ∈ [p]\k.
Recall that by assumption θl ∼ ml→i are independent. Denoting by z = Xθ ∈ Rn the pre-activations
(a.k.a. local-fields in the physics jargon), we can decompose:

zi =

p∑
l=1

Xilθl =
∑
l 6=k

Xilθl +Xikθk (D.7)
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Note that the first term is a sum of p − 1 independent random variables (recall Xil are i.i.d. and by
assumption θ` ∼ ml→i are independent). Its mean and variance under the ml→i expectation reads:

ωi→k = Eθl∼ml→i

∑
l 6=k

Xilθl

 =
∑
l 6=k

Xilθ̂l→i, (D.8)

Vi→k = Varθl∼ml→i [Xilθl] =
∑
l 6=k

V 2
li ĉl→i. (D.9)

Where θ̂k→i and ĉk→i are the mean and variances of the beliefs mk→i:

θ̂tk→i =

∫
R

dθ mt
k→i(θ)θ, ĉtk→i(θk) =

∫
R

dθ mk→i(θ)
t
[
(θ − θ̂k→i)2

]
(D.10)

Since Xil ∼ N (0, 1/p), the mean is a O(1) quantity, while the variance is O(1/p). Therefore, the central
limit theorem holds, and we have that:

zi = zi→k +Xikθk, zi→k ∼ N (ωi→k, Vi→k) (D.11)

Therefore, we can re-write the expectation in eq. (D.5) as:

m̂t
i→k(θk) ∝

∫
dz√

2πVi→k
e
− 1

2Vi→k
(z−ωi→k−Xikθk)2

ψ(yi|z +Xikθk) (D.12)

Note that this reduces the high-dimensional integral over p− 1 variables to a single Gaussian integral.
The attentive reader will notice that eq. (D.5) start to resemble a quantity we met in our replica
computation for the GLM: the likelihood effective partition function Zy in eq. (4.44).

We can further simplify these equations by noting that since Xik ∼ N (0, 1/p), the term Xikθk =
O(1/√p). Therefore, we can expand eq. (D.12):

m̂t
i→k(θk) ∝

∫
dz√

2πVi→k
e
− 1

2Vi→k
(z−ωi→k)2

ψ(yi|z)
[
1−

X2
ikθ

2
k

2Vi→k
+
z − ωi→k
Vi→k

Xikθk +
(z − ωi→k)2

2Vi→k
X2
ikθ

2
k + o(1/p)

]
Defining the so-called likelihood effective partition function and denoiser functions:

Zy(y, ω, v) = Ez∼N (ω,v)[ψ(y|z)] =

∫
dz√
2πv

e−
1
2

(z−ω)2ψ(y|z) (D.13)

fy(y, ω, v) = ∂ω logZ(y, ω, v) =

∫
dz√
2πv

e−
1
2

(z−ω)2ψ(y|z) z−ωv∫
dz√
2πv

e−
1
2

(z−ω)2ψ(y|z)
(D.14)

and noting the following identity:

∂ωf(y, ω, v) =
∂2
ωZy
Zy

−
(
∂ωZy
Zy

)2

=

∫
dz√
2πv

e−
1
2

(z−ω)2ψ(y|z)
(
z−ω
v

)2∫
dz√
2πv

e−
1
2

(z−ω)2ψ(y|z)
− fy(y, ω, v)2 − 1

v
(D.15)

we can write re-write eq. (D.13) as:

m̂t
i→k(θk) ∝ Zy(y, ωi→k, Vi→k)

[
1−

X2
ikθ

2
k

2Vi→k
+ fy(y, ωi→k, Vi→k)Xikθk

+
1

2

(
∂ωfy(y, ωi→k, Vi→k) + fy(y, ωi→k, Vi→k)

2 +
1

Vi→k

)
V 2
ikθ

2
k + o(1/p)

]
= Zy(y, ωi→k, Vi→k)e

1
2
∂ωfy(yi,ωi→k,Vi→k)V 2

ikθ
2
k+fy(yi,ωi→k,Vi→k)Xikθk + o(1/p) (D.16)
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where in the last equality we have re-exponentiated the expression. Finally, defining the following
auxiliary variables:

Ai→k = −∂ωfy(yi, ωi→k, Vi→k)X2
ik, bi→k = fy(yi, ωi→k, Vi→k)Xik (D.17)

and putting back the normalisation, we conclude that the factor-to-node beliefs are asymptotically
given by a Gaussian density with sufficient statistics (bi→k, Ai→k):

m̂i→k(θk) =

√
Ai→k

2π
e−

1
2
Ai→kθ

2
k+bi→kθk (D.18)

Gaussianity of the factor-to-variable beliefs m̂i→k directly imply Gaussianity of mk→i. Indeed, insert-
ing the above in the update equations for the variable-to-factor beliefs give:

mk→i(θk) =
ϕ(θk)e

− 1
2

∑
j 6=i

Ai→kθ
2
k+
∑
j 6=i

bi→kθk

∫
R dθ ϕ(θ)e

− 1
2

∑
j 6=i

Ai→kθ2+
∑
j 6=i

bi→kθ
(D.19)

To close the loop, we note that our starting point, the varible-to-factor belief mean and variances
defined in eq. (D.10) are related to the above by:

θ̂k→i = fθ

∑
j 6=i

bk→j ,
∑
j 6=i

Ak→i

 , ĉk→i = ∂bfθ

∑
j 6=i

bk→i,
∑
j 6=i

Ak→i

 (D.20)

where we have defined the prior denoising function:

fθ(b, A) =

∫
R dθϕ(θ)θe−

1
2
Aθ2+bθ∫

R dθϕ(θ)e−
1
2
Aθ2+bθ

(D.21)

Remark 12. A few remarks about reduced BP are in order.

• All approximations we made are exact to order o(1/p).

• For simplicity, we work with the first and second moments (bi→k, Ai→k). Alternatively, we could
have parametrised the factor-to-variable beliefs by the means and variances:

ri→k =
bi→k
Ai→k

, Σi→k =
1

Ai→k
(D.22)

These are the variables used in some of the GAMP papers, e.g. (Zdeborová and Krzakala, 2016).

• We have introduced different variables, so it is good to keep in mind the meaning of each of them:
(θ̂k→i, ĉk→i) are the mean and variance of the (Gaussian) variable-to-factor beliefs; (ωi→k, Vi→k)
are the mean and variances of the local fields zi→k =

∑
l 6=kXil; (bi→k, Ai→k) are sufficient

statistics to the (Gaussian) factor-to-variable beliefs.

• In the context of fully-connected mean-field models where rBP is exact, it is also known as
reduced Belief Propagation (rBP).

The Gaussian Belief Propagation algorithm is summarised in Algorithm 3
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Algorithm 3: rBP

Input: Data V ∈ Rn×p, y ∈ Rn, likelihood ψ, prior ϕ (defining fθ, fy).

Initialise θ̂0
k→i, ĉ

0
k→i.

for t ≤ T do
For every node k ∈ [d] and factor i ∈ [n]:
/* Update pre-activation mean and variances */
V t
i→k =

∑
l 6=k

X2
ilĉ
t
l→i; ωti→k =

∑
l 6=k

Xilθ̂
t
l→i;

/* Define auxiliary variables Ak→i, bk→i */
bti→k = fy(yi, ω

t
i→k, V

t
i→k)Xik; Ati→k = −∂ωfy(yi, ωi→k, Vi→k)X2

ik;
/* Update marginal mean and variance beliefs */

θ̂t+1
k→i = fθ

(∑
j 6=i

btj→k,
∑
j 6=i

Atj→k

)
; ĉt+1

j→k = ∂bfθ

(∑
j 6=i

btj→k,
∑
j 6=i

Atj→k

)
;

end for
Return: /* Estimated marginal mean and variance */

θ̂k = fθ

(
n∑
i=1

bTi→k,

n∑
i=1

ATi→k

)
, ĉk = ∂bfθ

(
n∑
i=1

bTi→k,

n∑
i=1

ATi→k

)

D.1.3 From rBP to GAMP

Reduced BP 3 and GAMP 1 are pretty similar algorithms. A quick comparison reveals that the
main different is on that GAMP depends only on the variable and factors nodes, while rBP has a
dependence on the edges. Quite surprisingly, we don’t loose anything by going from rBP to GAMP,
as the approximation we will introduce in this section will only cost us a o(1/p) factor, and therefore
is asymptotically exact at the same order in which Gaussian GP is an exact approximation of BP.
Although this might seem a small difference, it dropping the dependence of the edges has massive
impact over the running time, reducing the number of operations to O(np).

The key idea is to realise that the dependence of rBP on the factor/variable nodes is weak. For
instance, consider the pre-activation variance:

V t
k→i =

∑
l 6=k

X2
ilĉ
t
l→i =

d∑
l=1

X2
ilĉ
t
l→i −X2

ik ĉ
t
k→i (D.23)

Note that the first term in the sum is independent of the variable node k - all the dependence is in the
second term. However, since Xik ∼ N (0, 1/p), this term is subleading in p: V 2

ik ĉ
t
k→i = O(1/p). The idea

is to propagate this argument by keeping only leading order terms, which are O(1/√p). To implement
this, we start by defining the following variable-independent messages:

ωti :=
d∑
l=1

Xilθ̂
t
l

V t
i :=

d∑
l=1

X2
ilĉ
t
l

,


btk =

n∑
i=1

bi→k =
n∑
i=1

Xikfy(yi, ω
t
i , V

t
i )

Atk =
n∑
i=1

bi→k = −
n∑
i=1

X2
ik∂ωfy(yi, ω

t
i , V

t
i )

,

{
θ̂t+1
k = fθ(bk, Ak)

ĉt+1
k := ∂bfθ(bk, Ak)

(D.24)

4! Note that we define the factor independent quantities (bk, Ak) with the sum. This should not be
confused with the messages (bk→i, Ak→i) which are not summed over.
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The first step is to note that the variables involving a X2
il = O(1/p) factor can be directly simplified:

V t
k→i = V t

i +O(1/p),
∑
j 6=i

Atj→k = Atk +O(1/p). (D.25)

This is not the case for the other variables. Take for instance:

θ̂t+1
k→i = fθ

∑
j 6=i

btj→k,
∑
j 6=i

Atj→k

 = fθ
(
btk − bti→k, Atk

)
+O(1/p) (D.26)

But since bti→k = Xikfy(yi, ω
t
i→k, V

t
i→k) = O(1/√p), we can expand on the first argument of fθ to get:

θ̂t+1
k→i = fθ

(
btk, A

t
k

)
+ ∂bfθ

(
btk, A

t
k

)
bk→i +O(1/p)

= θ̂t+1
k − ĉt+1

k btk→i +O(1/p) (D.27)

Note that by definition, this also implies that:

ĉt+1
k→i = Var(θ̂tk→i) = ĉtk +O(1/p) (D.28)

since any correction will be quadratic on btk→i, hence O(1/p). Note, however, that the equations are
note closed, since they depend on edges through btk→i, which itself depends on ωk→i. To close them,
we need to further simplify their dependence on the edges. Looking at ωti→k

ωti→k =
∑
l 6=k

Xilθ̂l→i =

p∑
l 6=k

Xil

(
θ̂t+1
l − ĉt+1

l btl→i +O(1/p)
)

= ωti −
p∑

k=1

Xik ĉ
t
kb
t−1
k→i +O(1/p) (D.29)

Now noting that:

bti→k = Xikfy(yi, ω
t
k→i, V

t
k→i) = Xikfy(yi, ω

t
k −Xikθ̂

t
k, V

t
k ) + o(1/p)

= Xikfy(yi, ω
t
i , V

t
i )−X2

ik∂ωfy(yi, ω
t
i , V

t
i )θ̂tk + o(1/p) (D.30)

we have:

ωti→k = ωti + fy(yi, ω
t−1
i , V t−1

i )

p∑
k=1

X2
ik ĉ

t
k +O(1/p)

= ωti − V t
i fy(yi, ω

t−1
i , V t−1

i ) (D.31)

which allow us to write all the updates using only variable and factors. The only missing update is
btk, which can be obtained by summing over eq. (D.30):

btk =
n∑
i=1

bk→k =
n∑
i=1

Xikfy(yi, ω
t
i , V

t
i )− θ̂tk

n∑
i=1

X2
ik∂ωfy(yi, ω

t
i , V

t
i ) (D.32)

=

n∑
i=1

Xikfy(yi, ω
t
i , V

t
i ) +Atiθ̂

t
k (D.33)

Putting this together, we recover Algorithm 1 in the main. For convenience, we also write it in
components here in Algorithm 4.

Remark 13. Two remarks about GAMP:
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Algorithm 4: GAMP

Input: Data X ∈ Rn×p, y ∈ Rn, likelihood ψ, prior ϕ (defining fθ, fy).

Initialise θ̂0
k, ĉ

0
k, g

−1
i = 0.

for t ≤ T do
For every node k ∈ [d] and factor i ∈ [n]:
/* Update pre-activation mean and variances */

V t
i→k =

p∑
k=1

X2
ilĉ
t
k; ωti =

p∑
k=1

Xikθ̂
t
k − V t

i g
t−1
i ;

/* Define likelihood denoisers */
gti = fy(yi, ω

t
i , V

t
i ); ∂gi = ∂ωfy(yi, ω

t
i , V

t
i );

/* Update Ak, bk */

Atk = −
n∑
i=1

X2
ik∂gi; btk =

n∑
i=1

Xikg
t
i +Atiθ̂

t
k;

/* Update mean and variance*/
θ̂t+1
k = fθ

(
bti, A

t
i

)
; ĉt+1

k = ∂bfθ
(
btk, A

t
k

)
;

end for
Return: GAMP mean and variance θ̂Tk , ĉ

T
k

• The term Vig
t−1
i is known as the Onsager term, and plays a fundamental in ensuring that

the AMP marginals remain Gaussian at every iteration, despite the non-Gaussian correlations
introduced when repeatedly iterating over the covariates matrix Xik. The fact that at iteration
t it depends on the previous iterate t−1 is also crucial for the stability of the algorithm, and was
a source of confusion in the early literature in the context of the TAP equations, see (Zdeborová
and Krzakala, 2016) for a discussion.

• Since Xki ∼ N (0, 1/p), we have Var(X2
ki) = O(1/p2), which means that X2

ik concentrate to leading
order in O(1/p). Therefore, we can further take X2

ki → 1/p in all terms of GAMP 4 where X2
ki

appears.

D.2 State Evolution

In this section, we discuss the derivation of the state evolution equations. As in Appendix D.1, to
simplify the exposition we will focus in the isotropic case x ∼ N (0, 1/pIp), and will assume that data
was independently drawn generated from:

yi ∼ P?(yi|〈β?,x〉), β? ∼
p∏

k=1

Pβ(βk) (D.34)

As before, the discussion can be generalised to the full GCM model, with non-separable signal dis-
tribution Pβ (see (Berthier et al., 2020; Gerbelot and Berthier, 2023)) and non-isotropic covariates
(u,v) (see (Clarté et al., 2023)).

The goal of state evolution is to derive a closed set of equations tracking the performance of the
GAMP algorithm 4.

D.2.1 Derivation of the state evolution equations

State evolution can be derived both from GAMP 4 or rBP 3 - since these are asymptotically equivalent
algorithms, there is no difference. Here we opt to derive it from rBP since it is neater. The starting
point is to note that the pre-activation of the data likelihood ν = Xβ? is a Gaussian variable with
zero mean and covariance E[νν>] = ρIn with ρ = E[1/p||β?||2]. The rBP estimator θ̂tk→i correlates
with the target pre-activations ν through the covariates Xik, and our go is to track these correlations.
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First, as we already noted in remark 13, to leading order X2
ik = 1/p + o(1/p). Therefore, to leading

order the variables Vi and Ak are independent of the covariates:

V t
i→k = V t

i + o(1/p) =
1

p

p∑
k=1

ĉtk + o(1/p) =
1>ĉt

p
+ o(1/p) (D.35)

∑
j 6=i

Atj→k = Ati + o(1/p) = −1

p

n∑
i=1

∂gti + o(1/p) = −1>n∂g
t

p
+ o(1/p) (D.36)

This means all the dependence on Xik (and hence correlation with ν) is through ωti→k and bti→k. Let’s
start with the first.

At every iteration t < T , θ̂tl→i are independent of Xik, and since Xki ∼ N (0, 1/p) the variables

ωti→k =
∑

l 6=kXilθ̂l→i are jointly Gaussian with mean E[ωi→k] = 0 and covariance given by:

E[ωi→kωj→l] = δijδkl
1

p

∑
m6=k

(
θ̂tm→i

)2
= δijδkl

1

p

∑
m

(
θ̂tm

)2
+ o(1/p)

= δijδkl
1

p
||θt||22 + o(1/p) (D.37)

where θt ∈ Rp is the vector with components θtk. Moreover, ωti→k are correlated to the target pre-
activation. Decomposing:

νj =

p∑
l=1

Xjkβ?,l =

p∑
l 6=k

Xjlβ?,l +Xjkβ?,k = νj→k +Xjkβ?,k (D.38)

We have:

E[ωti→kνj→l] = δijδkl
1

p

∑
l 6=k

θ̂l→iβ?,l = δijδkl
1

p
〈θ̂t,β?〉+ o(1/p) (D.39)

4! Note that ωti→k =
∑

l 6=kXilθ̂
t
l are independent of Xik but νj does. Therefore, this decompo-

sition is not necessary at this step, since the additional term is zero under the expectation. However,
this decomposition will be important for the following steps.

Therefore, defining:

qt =
||θ̂t||22
p

, m =
〈θ̂t,β?〉

p
(D.40)

We conclude that to leading order:

(ωti→k, νi→k) ∼ N
(

02,

[
ρ mt

mt qt

])
(D.41)

independently over i ∈ [n] and k ∈ [p]. Now let’s look at b, which is a trickier term:∑
j 6=i

bj→k =
∑
j 6=i

Xjkfy(yj , ωj→k, Vj→k) (D.42)

The variance Vj→k concentrates. Moreover, the variable ωtj→k =
∑

l 6=kXilθ̂
t
l is independent of Xjk.

However, yj ∼ P?(y|〈β?,xj〉) is correlated with Xjk since it involves a sum over all k ∈ [n]. We need
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to account for this dependence. For that, let’s denote yi = f?(νi) with f? a stochastic function. Then,
we can then write:∑

j 6=i
bj→k =

∑
j 6=i

Xjkfy (f? (νj→k +Xjkβ?,k) , ωj→k, Vj→k)

=
∑
j 6=i

Xjkfy (f? (νj→k) , ωj→k, Vj→k) + β?,k
∑
j 6=i

X2
jk∂νfy (f? (νj→k) , ωj→k, Vj→k) (D.43)

Let’s look at both terms in this sum separately. With our splitting, fy(f?(νj→k), ω
t
j→k, V

t
j→k) are

independent of Xjk. Moreover, they are also independent over j. Therefore, again, the CLT holds,
and this first term will be an asymptotically Gaussian random variable with zero mean and variance
given by:

q̂ = αE(ν,ω)[fy(f?(ν), ω, v)2] (D.44)

where α = n/d, v = 1/p〈1p, ĉt〉 and the expectation is over eq. (D.41). To leading order, the second
concentrates. Defining:

m̂ = αE(ν,ω)[∂νfy(f?(ν), ω, v)]. (D.45)

We can write:

btk =
√
q̂tξ + m̂tβ?,k (D.46)

Moreover, note that we can also relate Ati in eq. (D.36) to the above:

v̂ := Atk = −αE(ν,ωt)[∂ωfy(f?(ν), ωt, vt)] (D.47)

To close the equations, it remains to relate (q̂, m̂) to (q,m, v). This can be achieved by using the
definition of the updates:

θ̂t+1
k = fθ

(
bti, A

t
i

)
, ĉt+1

k = ∂bfθ
(
btk, A

t
k

)
(D.48)

Which give us:

qt+1 = Eξ,β?
[
fθ(
√
q̂tξ + m̂β?, q̂

t)2
]
, (D.49)

mt+1 = Eξ,β?
[
fθ(
√
q̂tξ + m̂tβ?, q̂

t)β?

]
(D.50)

vt+1 = Eξ,β?
[
∂bfθ(

√
q̂tξ + m̂tβ?, q̂

t)
]

(D.51)

Putting together, we have the following state evolution equations:
v̂t = −αE(ν,ωt)[∂ωfy(f?(ν), ωt, vt)]

q̂t = αE(ν,ωt)[fy(f?(ν), ωt, vt)2]

m̂t = αE(ν,ωt)[∂νfy(f?(ν), ωt, vt)]

,


vt+1 = Eξ,β?

[
∂bfθ(

√
q̂tξ + m̂tβ?, v̂

t)
]

qt+1 = Eξ,β?
[
fθ(
√
q̂tξ + m̂β?, v̂

t)2
]
,

mt+1 = Eξ,β?
[
fθ(
√
q̂tξ + m̂tβ?, v̂

t)β?

] (D.52)

E Massaging the self-consistent equations

E.1 A simplified expression for ridge regression on the GCM

We are interested in finding a closed-form expression for the asymptotic excess risk of ridge regression
for the Gaussian covariate model:

r − σ2 = 1 + q − 2m (E.1)
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where q,m solve the following self-consistent equations:
v̂ = α

1+v

q̂ = α1+σ2+q−2m
(1+v)2

m̂ =
√
γ α

1+v


v = 1

p Tr Ω(λIp + v̂Ω)−1

q = 1
p Tr

(
q̂Ω + m̂2Φβ?β

>
? Φ>

)
Ω(λIp + v̂Ω)−2

m =
√
γ m̂p Tr Φβ?β

>
? Φ>(λIp + v̂Ω)−1

(E.2)

To alleviate the notation, we define a short-hand for the normalised trace of a matrix A ∈ Rn×n:

trA :=
1

n
TrA. (E.3)

and for the resolvent of Ω ∈ Rp×p evaluated at the negative real axis z = −t:

R(t; Ω) = (Ω + tIp)
−1, t ∈ R+ (E.4)

When it is clear from the context, we will omit the dependency on Ω and denote R(t; Ω)R(t). First,
note that many of these variables are redundant. For instance, we can solve for:

v =
α

v̂
− 1 (E.5)

Inserting this in the equation for v, we get a closed equation for v̂:

α

v̂
− 1 = tr Ω(λIp + v̂Ω)−1 =

1

v̂
tr Ω

(
λ

v̂
Ip + Ω

)−1

=
1

v̂
df1(λ/̂v) (E.6)

where we defined the (normalised) degrees of freedom (c.f. Definition 7):

d̃fα(λ; Ω) =
1

p
dfα(ν; Ω) =

1

p
Tr Ωα(λIp + Ω)−α (E.7)

This suggests that it makes sense to work with the following variable ν = λ/̂v ∈ R+, so that eq. (E.6)
read:

αν − λ = νd̃f1(ν) ⇔ α− λ

ν
= d̃f1(ν) (E.8)

Similarly, we can trivially rewrite m̂ as a function of v̂:

m̂ =
√
γv̂ (E.9)

Which allow us to write m entirely as a function of v̂

m = γv̂ tr Φβ?β
>
? Φ>(λIp + v̂Ω)−1

= γ tr Φβ?β
>
? Φ>(λ/̂vIp + Ω)−1

= γ tr Φβ?β
>
? Φ>R(ν) (E.10)

We now note that:

q̂ =
v̂2

α
r (E.11)

Inserting in the equation for q:

q = v̂2 tr
( r
α

Ω + γΦβ?β
>
? Φ>

)
Ω(λIp + v̂Ω)−2

= tr
( r
α

Ω + γΦβ?β
>
? Φ>

)
Ω(λ/̂vIp + Ω)−2 (E.12)

= tr
( r
α

Ω + γΦβ?β
>
? Φ>

)
ΩR(ν)2 (E.13)
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which we can also write as:

q =
r

α
d̃f2(ν) +

γ

p
〈Φβ?,Ω(Ω + λIp)

−2Φβ?〉 (E.14)

(E.15)

This allow us to derive a self-consistent equation for the risk:

r − σ2 := ρ+ q − 2m = ρ+
r

α
d̃f2(ν) +B − 2m (E.16)

with:

B :=
γ

p
〈Φβ?,Ω(Ω + νIp)

−2Φβ?〉

(a)
= m− γν

p
〈Φβ?, (Ω + νIp)

−2Φβ?〉

m =
γ

p
〈Φβ?, (Ω + νIp)

−1Φβ?〉 (E.17)

where in (a) we used the following identity:

Ω(νIp + Ω)−1 = (Ω + νIp − νIp)(νIp + Ω)−1 = Ip − ν(νIp + Ω)−1 (E.18)

This can be solved to yield an expression for the excess risk:

r − σ2 =
α

α− d̃f2(ν)
(ρ+B − 2m) + σ2 d̃f2(ν)

α− d̃f2(ν)

=
α

α− d̃f2(ν)
(ρ− γ/p〈Φβ?, (Ip + νR(ν))R(ν)Φβ?〉) + σ2 d̃f2(ν)

α− d̃f2(ν)
(E.19)

and allow us to identify the bias and variance decomposition of the excess risk:

B(α, γ, λ) =
α

α− d̃f2(ν)
(ρ− γ/p〈Φβ?, (Ip + νR(ν))R(ν)Φβ?〉) (E.20)

V(α, γ, λ) = σ2 d̃f2(ν)

α− d̃f2(ν)
(E.21)

with ν the solution of:

α− λ

ν
= d̃f1(ν) (E.22)

Finally, note that this expression can be written in terms of an integral. Consider the spectral decom-
position of Ω:

Ω =

p∑
j=1

σjuju
>
j (E.23)

We can define:

ηj = 〈uj ,Φβ?〉 (E.24)

Then, defining the joint density:

µ(η, σ) =

p∑
j=1

δ(η − ηj)δ(σj − σ) (E.25)
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Equation (E.19) can be rewritten as:

B(α, γ, λ) =
α

α− Eσ∼µ
[

σ2

(σ+ν)2

] (ρ− γE(η,σ)∼µ

[
η2

σ + ν

(
ν

σ + ν
+ 1

)])
(E.26)

V(α, γ, λ) = σ2
Eσ∼µ

[
σ2

(σ+ν)2

]
α− Eσ∼µ

[
σ2

(σ+ν)2

] (E.27)

with ν the solution of:

α− λ

ν
= E

[
σ

σ + ν

]
(E.28)

E.2 Well-specified ridge regression

In the well specified case, we have γ = 1 (p = d) and Φ = Ω. Note the variance term remains the
same, while the bias term now reads:

B(α, γ, λ) =
α

α− d̃f2(ν)

(
ρ− 1/p〈β?,Ω2(Ip + νR(ν))R(ν)β?〉

)
(E.29)

Using eq. (E.18) again:

Ω2R(ν) = Ω− νΩR(ν)

Ω2R(ν)2 = ΩR(ν)− νΩR(ν)2 (E.30)

This allow us to simplify the inner product term:

1/p〈β?,Ω2(Ip + νR(ν))R(ν)β?〉 = ρ− ν2/p〈β?,ΩR(ν)2β?〉 (E.31)

Therefore, the bias term simplifies, and is given by:

B(α, λ) =
αν2

α− d̃f2(ν)

1

p
〈β?,Ω (νIp + Ω)−2 β?〉 (E.32)

Isotropic covariance — Consider the isotropic case where Ω = Id. We then have:

α− λ

ν
=

1

1 + ν
(E.33)

Which admits an explicit solution:

ν?(α, λ) =
1− α+ λ+

√
(1− α+ λ)2 + 4αλ

2α
(E.34)

and the bias and variance terms can be simplified to:

B(α, λ) =
αν2

?

α− d̃f2(ν?)

ρ

(1 + ν?)2
=

αρν2
?

α(1 + ν?)2 − 1

V(α, λ) = σ2 d̃f2(ν?)

α− d̃f2(ν?)
=

σ2

α(1 + ν?)2 − 1
(E.35)

Note in particular that at interpolation λ = 0+, we have:

ν?(0, α) =

{
1/α− 1 for 0 ≤ α < 1

0 for α ≥ 1
(E.36)

65



and therefore:

B(α, 0) =

{
1−α
α2 for 0 ≤ α < 1

0 for α ≥ 1
, V(α, 0) =


σ2α
1−α for 0 ≤ α < 1

∞ for α = 1
σ2

α−1 for α > 1

(E.37)

In particular, note that we have ν?(λ, 1) ∼
√
λ as λ→ 0+, therefore V(λ, 1) ∼ 1√

λ
as λ→ 0+.

E.3 Random features ridge regression

We now consider the particular example of ridge regression on the random features model, where:

Φ = b1
W0√
d
, Ω = b21

W0W
>
0

d
+ b2?Ip = b21

W0W
>
0

d
+ b2?Ip (E.38)

In particular, note that we have:

Ω = ΦΦ> + b2?Ip (E.39)

which means that ΦΦ> and Ω are jointly diagonalisable. We start the discussion by simplifying the
bias term. Consider the inner product term in eq. (E.20):

1/p〈β?,Φ>(Ip + νR(ν; Ω))R(ν; Ω)Φβ?〉 (E.40)

Recalling the following Woodbury identities for a rectangular matrix U ∈ Rp×d:

U>(λIp +UU>)−1U = Id − λ(λId +U>U)−1 (E.41)

U>(λIp +UU>)−2U = (λId +U>U)−1 − λ(λId +U>U)−2 (E.42)

Defining the shorthand ν̃ = ν + b2? to lighten the notation and using the above, we can write:

Φ>R(ν̃; ΦΦ>)Φ = Id − ν̃(ν̃Id + Φ>Φ)−1

= Id − ν̃R(ν̃; Φ>Φ) (E.43)

Φ>R(ν̃; ΦΦ>)2Φ = (ν̃Id + Φ>Φ)−1 − ν̃(ν̃Id + Φ>Φ)−2

= R(ν̃; Φ>Φ)− ν̃R(ν̃; Φ>Φ)2 (E.44)

With this, we can write the inner product term:

〈β?,Φ>(Ip + νR(ν; Ω))R(ν; Ω)Φβ?〉 = ||β?||22 − (ν̃ − ν)〈β?,R(ν̃; Φ>Φ)β?〉+ νν̃〈β?,R(ν̃; Φ>Φ)2β?〉

= dρ− 〈β?,
(
b2? + ν(ν + b2?)R(ν̃; Φ>Φ)

)
R(ν̃; Φ>Φ)β?〉

(E.45)

Therefore, the bias term can be simplified to:

B(α, γ, λ) =
αγ/p〈β?,

(
b2? + ν(ν + b2?)R(ν + b2?; Φ

>Φ)
)
R(ν + b2?; Φ

>Φ)β?〉
α− d̃f2(ν + b2?; ΦΦ>)

(E.46)

If moreover we assume the target weights are random: β? ∼ N (0, Id), we have concentration of the
quadratic forms on the trace, giving us:

B(α, γ, λ) =
α/dTr

{(
b2? + ν(ν + b2?)R(ν + b2?; Φ

>Φ)
)
R(ν + b2?; Φ

>Φ)
}

α− d̃f2(ν + b2?; ΦΦ>)
(E.47)

Note that the trace in the enumerator in over a Rd×d matrix, while the one in the denominator is over
Rp×p.
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dimensions: Statistical and computational phase transitions. Advances in Neural Information Pro-
cessing Systems, 33:11071–11082, 2020.
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Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro. Spin glass theory and beyond: An Introduc-
tion to the Replica Method and Its Applications, volume 9. World Scientific Publishing Company,
1987.

Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algorithmic solution of random
satisfiability problems. Science, 297(5582):812–815, 2002.

Theodor Misiakiewicz and Andrea Montanari. Six lectures on linearized neural networks. arXiv
preprint arXiv:2308.13431, 2023.

Theodor Misiakiewicz and Basil Saeed. A non-asymptotic theory of kernel ridge regression: determin-
istic equivalents, test error, and gcv estimator. arXiv preprint arXiv:2403.08938, 2024.
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Krzakala. Fundamental limits of weak learnability in high-dimensional multi-index models. arXiv
preprint arXiv:2405.15480, 2024.
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